Successful host defense against viral infection, relies on the early detection of the virus followed by the rapid production of type IIFN genes and the establishment of a cellular anti-viral state. Detection is mediated by germline-encoded innate immune receptors, often referred to as pattern recognition receptors (PRRs). These PRRs, which include both TLRs (TLR3, TLR7, TLR8 and TLR9) and cytoplasmic RNA helicases (RIG-I, Mda-5 and possibly others) are capable of detecting viral nucleic acids. Double stranded RNA, a key signature of viral replication is recognised by TLRS, in the endosomal compartment, or by the RNAhelicases, if in the cytoplasm. Type I IFNgene induction downstream of TLRS and RIG-I requires the signal-dependent phosphorylation of IRF3, enabling IRF3 to dimerize, translocate to the nucleas and activate IFN gene transcription. TBK-1 and IKKE phosphorylate and activate IRF3. TBK1 and IKKe are required for TLR and RNA helicase signaling. Little else is known however, about the molecular events that connect TLRs or RNA helicases with these kinases. Our goal is to understand in detail these molecular events. We will use a combination of biochemical, visual and molecular genetic approaches to understand how viral pathogens are recognized by the innate immune response during infection and how these PRR- pathways activate these kinases. Successful completion of these studies will help us understand the molecular mechanisms responsible for the innate immune sensing of viral pathogens. These studies are also vital for the rational design of therapeutic agents to enhance innate immunity in host defense against infectious pathogens. Since type I IFNs also occupy centre stage inthe pathogenesis of systemic and organ-specific autoimmune diseases including Systemic Lupus Erythematosus (SLE), a clearer understanding of the regulation of these important immune mediators will also be useful for the treatment of these and other related autoimmune diseases. In summary, defining these pathways in great detail will be important to allow us to design therapies which could be used to turn on these kinases, as a way to assist in clearance of a viral pathogen, which would be advantageous to the host, or alternatively, to turn them off in situations, such as autoimmune disease, where production of IFN is disadvantageous to the host.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI067497-04
Application #
7578241
Study Section
Special Emphasis Panel (ZRG1-III (01))
Program Officer
Leitner, Wolfgang W
Project Start
2006-03-01
Project End
2011-02-28
Budget Start
2009-03-01
Budget End
2010-02-28
Support Year
4
Fiscal Year
2009
Total Cost
$386,974
Indirect Cost
Name
University of Massachusetts Medical School Worcester
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
603847393
City
Worcester
State
MA
Country
United States
Zip Code
01655
Orning, Pontus; Weng, Dan; Starheim, Kristian et al. (2018) Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science 362:1064-1069
Ghosh, Sreya; Wallerath, Christina; Covarrubias, Sergio et al. (2017) The PYHIN Protein p205 Regulates the Inflammasome by Controlling Asc Expression. J Immunol 199:3249-3260
Rathinam, Vijay A K; Fitzgerald, Katherine A (2016) Inflammasome Complexes: Emerging Mechanisms and Effector Functions. Cell 165:792-800
Atianand, Maninjay K; Hu, Wenqian; Satpathy, Ansuman T et al. (2016) A Long Noncoding RNA lincRNA-EPS Acts as a Transcriptional Brake to Restrain Inflammation. Cell 165:1672-1685
Elling, Roland; Chan, Jennie; Fitzgerald, Katherine A (2016) Emerging role of long noncoding RNAs as regulators of innate immune cell development and inflammatory gene expression. Eur J Immunol 46:504-12
Pawaria, Sudesh; Moody, Krishna L; Busto, Patricia et al. (2015) An unexpected role for RNA-sensing toll-like receptors in a murine model of DNA accrual. Clin Exp Rheumatol 33:S70-3
Vanaja, Sivapriya K; Rathinam, Vijay A K; Fitzgerald, Katherine A (2015) Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol 25:308-15
Blin, Juliana; Fitzgerald, Katherine A (2015) Perspective: The RNA exosome, cytokine gene regulation and links to autoimmunity. Cytokine 74:175-80
Baum, Rebecca; Sharma, Shruti; Carpenter, Susan et al. (2015) Cutting edge: AIM2 and endosomal TLRs differentially regulate arthritis and autoantibody production in DNase II-deficient mice. J Immunol 194:873-7
Chan, Jennie; Atianand, Maninjay; Jiang, Zhaozhao et al. (2015) Cutting Edge: A Natural Antisense Transcript, AS-IL1?, Controls Inducible Transcription of the Proinflammatory Cytokine IL-1?. J Immunol 195:1359-63

Showing the most recent 10 out of 61 publications