Enterococci have emerged as leading causes of multidrug resistant hospital infection. Yet they have existed as commensal microbes of everything from insects to man for over 400 million years. Work in the initial period of support showed that multidrug resistant hospital strains have swollen genomes about 25% larger than those of commensal strains. This additional DNA consists largely of a pathogenicity island (PAI) and other fitness islands, antibiotic resistance and other plasmids, transposons, IS elements and phage. We found that the multidrug resistant hospital strains with swollen genomes that emerged in the 70's and later lacked an important defense of the fidelity of the chromosome - the CRISPR locus. Moreover, we showed that in pheromone plasmid containing strains with multiple copies of IS elements, all chromosomal genes could be transferred to a recipient by an Hfr- like plasmid mobilization mechanism. The goal of the competing continuation period is to understand the mechanisms underlying the plasticity and movement of a pathogenicity island in enterococci - the largest mobile element described in the species, and one that harbors most of the know virulence traits. Specifically, data from the initial support period suggested that the E. faecalis PAI evolved by the accretion of modules, possibly mediated by transposases or other site specific recombinases found in the PAI. We now propose to test the integrity and stability of these modules, and determine how genes occurring within a module are functionally linked in disease and colonization environments. Moreover, we propose to determine whether the PAI site specific recombinases are vestigial, or whether they continue to serve an important role in the dissemination of the PAI. These studies will illuminate the mechanisms responsible for the emergence of enterococci as increasingly virulent, multidrug resistant hospital pathogens from roots as benign commensals. Moreover, by understanding the mechanisms involved, we will have the information necessary to quantify the risk of spread of resistance and virulence features among enterococci, and the information needed to understand how widespread antibiotic use selected for microbes with enhanced ability to acquire and accumulate resistance as well as virulence traits.

Public Health Relevance

Multidrug resistant hospital infection is a leading public health concern in the US. Commensal microbes, such as the enterococci, have emerged in the antibiotic era with multiple drug resistances and enhanced virulence. The goals of this project are to determine the mechanisms involved in this transition, and the forces that selected for the outgrowth of these multidrug resistant strains.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Bacterial Pathogenesis Study Section (BACP)
Program Officer
Huntley, Clayton C
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts Eye and Ear Infirmary
United States
Zip Code
Lieberman, Mia T; Van Tyne, Daria; Dzink-Fox, JoAnn et al. (2018) Long-Term Colonization Dynamics of Enterococcus faecalis in Implanted Devices in Research Macaques. Appl Environ Microbiol 84:
Lebreton, François; Valentino, Michael D; Schaufler, Katharina et al. (2018) Transferable vancomycin resistance in clade B commensal-type Enterococcus faecium. J Antimicrob Chemother 73:1479-1486
Zhang, Sicai; Lebreton, Francois; Mansfield, Michael J et al. (2018) Identification of a Botulinum Neurotoxin-like Toxin in a Commensal Strain of Enterococcus faecium. Cell Host Microbe 23:169-176.e6
Lebreton, François; Manson, Abigail L; Saavedra, Jose T et al. (2017) Tracing the Enterococci from Paleozoic Origins to the Hospital. Cell 169:849-861.e13
Woods, Stephanie E; Lieberman, Mia T; Lebreton, Francois et al. (2017) Characterization of Multi-Drug Resistant Enterococcus faecalis Isolated from Cephalic Recording Chambers in Research Macaques (Macaca spp.). PLoS One 12:e0169293
Van Tyne, Daria; Gilmore, Michael S (2017) Raising the Alarmone: Within-Host Evolution of Antibiotic-Tolerant Enterococcus faecium. MBio 8:
Wurster, Jenna I; Saavedra, José T; Gilmore, Michael S (2016) Impact of Antibiotic Use on the Evolution of Enterococcus faecium. J Infect Dis 213:1862-5
Gaca, Anthony O; Gilmore, Michael S (2016) Killing of VRE Enterococcus faecalis by commensal strains: Evidence for evolution and accumulation of mobile elements in the absence of competition. Gut Microbes 7:90-6
Gaca, Anthony O; Gilmore, Michael S (2016) A lysin to kill. Elife 5:
Van Tyne, Daria; Gilmore, Michael S (2014) Virulence Plasmids of Nonsporulating Gram-Positive Pathogens. Microbiol Spectr 2:

Showing the most recent 10 out of 34 publications