Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
1R01AR041464-01
Application #
3161912
Study Section
Respiratory and Applied Physiology Study Section (RAP)
Project Start
1992-03-03
Project End
1992-05-21
Budget Start
1992-03-03
Budget End
1992-05-21
Support Year
1
Fiscal Year
1992
Total Cost
Indirect Cost
Name
University of Illinois at Chicago
Department
Type
Schools of Allied Health Profes
DUNS #
121911077
City
Chicago
State
IL
Country
United States
Zip Code
60612
Southard, Sheryl; Kim, Ju-Ryoung; Low, SiewHui et al. (2016) Myofiber-specific TEAD1 overexpression drives satellite cell hyperplasia and counters pathological effects of dystrophin deficiency. Elife 5:
Tsika, Richard W; Ma, Lixin; Kehat, Izhak et al. (2010) TEAD-1 overexpression in the mouse heart promotes an age-dependent heart dysfunction. J Biol Chem 285:13721-35
Tsika, Richard W; Schramm, Christine; Simmer, Gretchen et al. (2008) Overexpression of TEAD-1 in transgenic mouse striated muscles produces a slower skeletal muscle contractile phenotype. J Biol Chem 283:36154-67
Ji, Juan; Tsika, Gretchen L; Rindt, Hansjorg et al. (2007) Puralpha and Purbeta collaborate with Sp3 to negatively regulate beta-myosin heavy chain gene expression during skeletal muscle inactivity. Mol Cell Biol 27:1531-43
Tsika, Gretchen; Ji, Juan; Tsika, Richard (2004) Sp3 proteins negatively regulate beta myosin heavy chain gene expression during skeletal muscle inactivity. Mol Cell Biol 24:10777-91
Karasseva, Natalia; Tsika, Gretchen; Ji, Juan et al. (2003) Transcription enhancer factor 1 binds multiple muscle MEF2 and A/T-rich elements during fast-to-slow skeletal muscle fiber type transitions. Mol Cell Biol 23:5143-64
Tsika, Richard W; McCarthy, John; Karasseva, Natalia et al. (2002) Divergence in species and regulatory role of beta -myosin heavy chain proximal promoter muscle-CAT elements. Am J Physiol Cell Physiol 283:C1761-75
Vyas, D R; McCarthy, J J; Tsika, G L et al. (2001) Multiprotein complex formation at the beta myosin heavy chain distal muscle CAT element correlates with slow muscle expression but not mechanical overload responsiveness. J Biol Chem 276:1173-84
Vyas, D R; McCarthy, J J; Tsika, R W (1999) Nuclear protein binding at the beta-myosin heavy chain A/T-rich element is enriched following increased skeletal muscle activity. J Biol Chem 274:30832-42
McCarthy, J J; Vyas, D R; Tsika, G L et al. (1999) Segregated regulatory elements direct beta-myosin heavy chain expression in response to altered muscle activity. J Biol Chem 274:14270-9

Showing the most recent 10 out of 15 publications