Many nuclear receptors act in trans to repress transcriptional responses to signaling pathways as a central aspect of their biological functions, but the underlying mechanisms remain an important and unresolved question in development and homeostasis. Studies performed during the current funding period of this grant demonstrated that the glucocorticoid receptor (GR), the peroxisome proliferator-activated receptor y (PPAR?) and liver X receptors (LXRs) repress responses to toll-like receptor activation in a promoter-, and nuclear receptor-specific manner. The current proposal seeks to define the underlying mechanisms responsible for these specific programs of repression on a genome-wide scale. Preliminary studies indicate that PPAR? represses a subset of inflammatory response genes in macrophages by preventing the signal- dependent dissociation of NCoR co-repressor complexes. Surprisingly, this mechanism involves ligand- dependent sumoylation of the PPAR? ligand binding domain, which targets PPAR? to NCoR/HDACs co- repressor complexes on inflammatory gene promoters. The interaction of sumoylated PPAR? with NCoR/HDAC3 complexes prevents the recruitment of ubiquitylation/igS proteosome machinery that normally mediates their signal-dependent removal. Studies in Drosophila Schneider cells suggests that this sumoylation-dependent transrepression pathway is evolutionarily conserved and is utilized by both orphan and ligand-dependent nuclear receptors. Based on these observations, we propose to explore the roles of sumoylation and NCoR co-repressor complexes in nuclear receptor-dependent transrepression of innate immune responses on a genome-wide scale.
Three Specific Aims are proposed.
Specific Aim i will test the hypothesis that sumoylation of nuclear receptors is a broadly used mechanism in transrepression of inflammatory programs of gene expression.
Specific Aim 2 will test the hypothesis that sumoylation of nuclear receptors mediates repression of inflammatory programs of gene expression by preventing co- repressor/co-activator exchange.
Specific Aim 3 will test the hypothesis that the function of NCoR co- repressor complexes is modulated by the histone methyltransferase SMYDs. The results of these studies are likely to lead to new insights into the mechanisms underlying transrepression of inflammatory responses that can be exploited for development of novel therapeutic approaches. ? ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA052599-18
Application #
7367870
Study Section
Special Emphasis Panel (ZRG1-III-F (01))
Program Officer
Mufson, R Allan
Project Start
1991-04-01
Project End
2011-02-28
Budget Start
2008-03-01
Budget End
2009-02-28
Support Year
18
Fiscal Year
2008
Total Cost
$433,949
Indirect Cost
Name
University of California San Diego
Department
Other Basic Sciences
Type
Schools of Medicine
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Gosselin, David; Link, Verena M; Romanoski, Casey E et al. (2014) Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159:1327-40
Lam, Michael T Y; Cho, Han; Lesch, Hanna P et al. (2013) Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature 498:511-5
Xie, Lan; Sullivan, Amy L; Collier, Jana G et al. (2013) Serum response factor indirectly regulates type I interferon-signaling in macrophages. J Interferon Cytokine Res 33:588-96
Stender, Joshua D; Pascual, Gabriel; Liu, Wen et al. (2012) Control of proinflammatory gene programs by regulated trimethylation and demethylation of histone H4K20. Mol Cell 48:28-38
Escoubet-Lozach, Laure; Benner, Christopher; Kaikkonen, Minna U et al. (2011) Mechanisms establishing TLR4-responsive activation states of inflammatory response genes. PLoS Genet 7:e1002401
Huang, Wendy; Ghisletti, Serena; Saijo, Kaoru et al. (2011) Coronin 2A mediates actin-dependent de-repression of inflammatory response genes. Nature 470:414-8
Sullivan, Amy L; Benner, Christopher; Heinz, Sven et al. (2011) Serum response factor utilizes distinct promoter- and enhancer-based mechanisms to regulate cytoskeletal gene expression in macrophages. Mol Cell Biol 31:861-75
Saijo, Kaoru; Collier, Jana G; Li, Andrew C et al. (2011) An ADIOL-ER?-CtBP transrepression pathway negatively regulates microglia-mediated inflammation. Cell 145:584-95
Mercer, Elinore M; Lin, Yin C; Benner, Christopher et al. (2011) Multilineage priming of enhancer repertoires precedes commitment to the B and myeloid cell lineages in hematopoietic progenitors. Immunity 35:413-25
Lin, Yin C; Jhunjhunwala, Suchit; Benner, Christopher et al. (2010) A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nat Immunol 11:635-43

Showing the most recent 10 out of 32 publications