Malignant brain tumors represent one of the most refractory cancers to therapy and remain incurable. Gliomas represent the most common type of brain tumors that occur in various grades, with the patient's prognosis inversely proportional to the grade. The long-term objective of my laboratory is to understand the cellular and molecular mechanisms that underlie tumor invasiveness in human gliomas. My laboratory has been active in the study of proteases and the biology of brain tumors, and data generated so far have indicated that changes in proteases are correlated with the changes in the grade of the tumors. The hypotheses is: Regulation of uPAR and uPA expression in human gliomas via a plasmid/Ad construct expressing siRNA for and uPAR and uPA message will inhibit tumor growth, invasion and angiogenesis.
The Specific Aims to address these hypothesis are as follows:
Specific Aim 1. Evaluate the effect of vectors expressing siRNA targeting uPAR and uPA (pU2/AdU2) on glioma cell growth, attachment, migration and invasion in vitro, la. Determine the effect of vectors expressing siRNA against uPAR and uPA single or bicistronic constructs (puPAR, puPA and pU2) on uPAR and uPA levels in glioblastoma cell lines. Ib. Compare the effect of the single or bicistronic siRNA constructs (puPAR, puPA and pU2) on glioma growth, adhesion, apoptosis and migration with that of control/mock EV (empty vector) and SV (scrambled vector) in vitro. Ic. Investigate the effect of the single or bicistronic siRNA constructs (puPAR, puPA and pU2) on the invasive behavior of human glioblastoma cells in in vitro models with that of control/mock, EV (empty vector) and SV (scrambled vector).
Specific Aim 2. Determine the in vivo effects of single or bicistronic siRNA constructs for uPAR and uPA (puPAR, puPA and pU2 or Ad-uPAR/Ad-uPA/AduPAR- uPA) on invasion, angiogenesis and tumorigenicity in nude mice. 2a. Access the ability of the puPA/puPAR/pU2 constructs in pre-established intracranial tumor growth or invasiveness of human glioblastoma cell lines (SNB19 and U251) injected intracerebrally in nude mice. 2b. Determine the effect of puPA/puPAR/pU2/AdU2 constructs in preestablished intracranial tumor growth or invasiveness of two xenografts and U87 sense SPARC stable cells (U87SS) in nude mice. 2c. Evaluate the effect of single or bicistronic siRNA constructs for uPAR and uPA (puPAR, puPA and pU2/AdU2) on cerebral angiogenesis in both in vitro and in vivo models. We anticipate that these results will substantially augment our understanding of how uPAR and uPA molecules are regulated; thus, information gained should be of help in developing new therapeutic approaches to treat glioblastomas.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA075557-11
Application #
7414467
Study Section
Special Emphasis Panel (ZRG1-BDCN-E (02))
Program Officer
Ault, Grace S
Project Start
1998-05-05
Project End
2010-04-30
Budget Start
2008-05-15
Budget End
2009-04-30
Support Year
11
Fiscal Year
2008
Total Cost
$231,475
Indirect Cost
Name
University of Illinois at Chicago
Department
Other Basic Sciences
Type
Schools of Medicine
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
Raghu, Hari; Nalla, Arun Kumar; Gondi, Christopher S et al. (2012) uPA and uPAR shRNA inhibit angiogenesis via enhanced secretion of SVEGFR1 independent of GM-CSF but dependent on TIMP-1 in endothelial and glioblastoma cells. Mol Oncol 6:33-47
Raghu, Hari; Gondi, Christopher S; Dinh, Dzung H et al. (2011) Specific knockdown of uPA/uPAR attenuates invasion in glioblastoma cells and xenografts by inhibition of cleavage and trafficking of Notch -1 receptor. Mol Cancer 10:130
Nalla, A K; Gorantla, B; Gondi, C S et al. (2010) Targeting MMP-9, uPAR, and cathepsin B inhibits invasion, migration and activates apoptosis in prostate cancer cells. Cancer Gene Ther 17:599-613
Kyritsis, Athanassios P; Bondy, Melissa L; Rao, Jasti S et al. (2010) Inherited predisposition to glioma. Neuro Oncol 12:104-13
Pulukuri, Sai Murali Krishna; Gorantla, Bharathi; Dasari, Venkata Ramesh et al. (2010) Epigenetic upregulation of urokinase plasminogen activator promotes the tropism of mesenchymal stem cells for tumor cells. Mol Cancer Res 8:1074-83
Raghu, Hari; Lakka, Sajani S; Gondi, Christopher S et al. (2010) Suppression of uPA and uPAR attenuates angiogenin mediated angiogenesis in endothelial and glioblastoma cell lines. PLoS One 5:e12458
Chetty, Chandramu; Lakka, Sajani S; Bhoopathi, Praveen et al. (2010) MMP-2 alters VEGF expression via alphaVbeta3 integrin-mediated PI3K/AKT signaling in A549 lung cancer cells. Int J Cancer 127:1081-95
Malla, Ramarao; Gopinath, Sreelatha; Alapati, Kiranmai et al. (2010) Downregulation of uPAR and cathepsin B induces apoptosis via regulation of Bcl-2 and Bax and inhibition of the PI3K/Akt pathway in gliomas. PLoS One 5:e13731
Gondi, Christopher S; Rao, Jasti S (2009) Therapeutic potential of siRNA-mediated targeting of urokinase plasminogen activator, its receptor, and matrix metalloproteinases. Methods Mol Biol 487:267-81
Gogineni, Venkateswara Rao; Kargiotis, Odysseas; Klopfenstein, Jeffrey D et al. (2009) RNAi-mediated downregulation of radiation-induced MMP-9 leads to apoptosis via activation of ERK and Akt in IOMM-Lee cells. Int J Oncol 34:209-18

Showing the most recent 10 out of 95 publications