The goal of this research is to define the fundamental role that chromatin plays during the repair of radiation-induced double-strand breaks (DSBs). Cell survival and maintenance of genome integrity are critically dependent on the repair of DSBs. If repaired incorrectly, DSBs result in aberrations such as chromosomal rearrangements and can lead to formation of cancers. In order to fully understand the repair of radiation-induced DSBs, it is important to consider the natural context - chromatin. The packaging of the genome into chromatin is likely to influence DNA repair processes by analogy to the situation with gene expression. Accordingly, we have discovered that the chromatin assembly factors Asf1 and CAF-1 are essential for cell survival following the repair of radiation-induced, endogenous and developmentally-programmed DNA damage in vivo. Furthermore, we have recently shown for the first time that histone acetylation changes locally during DSB repair via the homologous recombination pathway, and that cells die if they cannot change their acetylation state during DSB repair. We will test the hypothesis that specific post- translational modifications of histones, remodeling, disassembly, and reassembly of the chromatin occur at the DSB during repair. Furthermore, we will define the molecular mechanism as to why these chromatin dynamics are essential and intrinsic to chromosomal repair. Finally, we will identify novel chromatin modifications that are critical for DSB repair. In order to gain insight into the repair of radiation-induced DNA damage, the approach will be to synchronously induce a highly specific endonuclease within yeast to study the molecular events at a unique defined DSB. Using this model system, we will map the changes to the chromatin structure that precede, accompany and follow the repair of a DSB. The findings of the proposed experiments will provide the foundation for understanding the fundamental, yet poorly understood, role of chromatin structure during the repair of radiation-induced DSBs. As such, these studies are directly applicable to human diseases that result from radiation-induced loss of genome integrity, including many forms of cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA095641-08
Application #
7658910
Study Section
Radiation Therapeutics and Biology Study Section (RTB)
Program Officer
Pelroy, Richard
Project Start
2002-05-01
Project End
2010-04-29
Budget Start
2009-08-01
Budget End
2010-04-29
Support Year
8
Fiscal Year
2009
Total Cost
$260,847
Indirect Cost
Name
University of Colorado Denver
Department
Biochemistry
Type
Schools of Medicine
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Huang, Ting-Hsiang; Fowler, Faith; Chen, Chin-Chuan et al. (2018) The Histone Chaperones ASF1 and CAF-1 Promote MMS22L-TONSL-Mediated Rad51 Loading onto ssDNA during Homologous Recombination in Human Cells. Mol Cell 69:879-892.e5
Tyler, Jessica K; Johnson, Jay E (2018) The role of autophagy in the regulation of yeast life span. Ann N Y Acad Sci 1418:31-43
Hu, Zheng; Xia, Bo; Postnikoff, Spike Dl et al. (2018) Ssd1 and Gcn2 suppress global translation efficiency in replicatively aged yeast while their activation extends lifespan. Elife 7:
Hung, Putzer J; Chen, Bo-Ruei; George, Rosmy et al. (2017) Deficiency of XLF and PAXX prevents DNA double-strand break repair by non-homologous end joining in lymphocytes. Cell Cycle 16:286-295
Postnikoff, Spike D L; Johnson, Jay E; Tyler, Jessica K (2017) The integrated stress response in budding yeast lifespan extension. Microb Cell 4:368-375
Fowler, Faith; Tyler, Jessica K (2017) Anchoring Chromatin Loops to Cancer. Dev Cell 42:209-211
Aguilar, Rhiannon R; Tyler, Jessica K (2017) Thinking Outside the Cell: Replicating Replication In Vitro. Mol Cell 65:5-7
Diao, Li-Ting; Chen, Chin-Chuan; Dennehey, Briana et al. (2017) Delineation of the role of chromatin assembly and the Rtt101Mms1 E3 ubiquitin ligase in DNA damage checkpoint recovery in budding yeast. PLoS One 12:e0180556
Wang, Pingping; Byrum, Stephanie; Fowler, Faith C et al. (2017) Proteomic identification of histone post-translational modifications and proteins enriched at a DNA double-strand break. Nucleic Acids Res 45:10923-10940
Chen, Kaifu; Hu, Zheng; Xia, Zheng et al. (2016) The Overlooked Fact: Fundamental Need for Spike-In Control for Virtually All Genome-Wide Analyses. Mol Cell Biol 36:662-7

Showing the most recent 10 out of 45 publications