This competitive renewal grant application is based on our recent discovery that aerobic capacity, which has a heritable component, is strongly inversely associated with the occurrence of experimentally-induced breast cancer. Low aerobic capacity rats (LCR) had a 5.9-fold greater risk for breast cancer compared with high aerobic capacity rat (HCR) (OR: 5.90, 95% CI, 2.35-14.82). Subsequent molecular analyses revealed marked suppression of protein kinase A (PKA) phosphorylation and of several of its downstream targets including Src, signal transducer and activator of transcription 3 (STAT3), protein kinase B (Akt) and cAMP response-element binding protein (CREB) in mammary glands and tumors of HCR vs. LCR rats. This proposal builds on these observations to gain insights about how: (1) aerobic capacity, and (2) exercise training impact risk of breast cancer, and (3) whether effects on carcinogenesis are mediated in part via regulation of PKA and its downstream targets.
Two aims are proposed:
Aim 1 Determine the effect of aerobic exercise, in the presence or absence of a training effect, on mammary carcinogenesis in LCR and HCR rats. We will determine the effect(s) on the carcinogenic response and cellular and molecular mechanisms of aerobic exercise training: a) that increases aerobic capacity of LCR rats to the aerobic capacity of sedentary HCR rats, but that has no effect of the aerobic capacity of HCR rats, b) that induces the same percent increase in aerobic capacity in LCR and HCR rats, and c) that induces no change in aerobic capacity in LCR or HCR rats, i.e. the effect of exercise in the absence of a training effect. Mechanistic studies will identify the cellular process (es) (cell proliferation, apoptosis and/or angiogenesis) to which effects on carcinogenesis are linked, determine whether PKA mediates the observed effects on these processes, and investigate how changes in protein kinase A are mediated. Chemical agonists/antagonists administered locally via cannulation of the mammary gland lactiferous duct or systemically and gene knock down targeting PKA will be used to investigate causality.
Aim 2 Determine exercise-aerobic capacity-cancer dose responses in LCR and HCR rats. Our hypothesis is that exercise-aerobic capacity-cancer dose responses will differ in LCR and HCR under varying exercise intensity (low, intermediate, and high) when rats are allowed to run without limitation.
This aim extends our work to exercise conditions beyond those that increase aerobic capacity and examines the question, if some exercise is good, is more better? Evidence of linear and J-shaped hormetic dose responses will be assessed. Mechanistic studies will investigate the role of systemic and local effects such as -adrenergic regulated lipolysis that is mediated by PKA, recognizing the role of lipolysis in supporting extended periods of exercise. Paralleling Aim 1, chemical agonists and antagonists and genetic manipulations targeting -adrenergic receptor mediated signaling will be used to examine causal relationships.

Public Health Relevance

The work proposed will inform the common approach to health-physical activity counseling, namely that physically inactive individuals simply need to become physically active to be healthier and to reduce their risk for diseases such as breast cancer. We predict that there are additional considerations that need to be factored into the formulation of personalized lifestyle recommendations for cancer prevention and control. The proposed experiments will provide a framework for developing guidelines for tailoring aerobic fitness programs and may also lead to the identification of pharmacological approaches that mimic the effects of aerobic capacity (fitness) and/or exercise training on key molecular targets that would complement the activities of lifestyle interventions designed to prevent and control cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA100693-14
Application #
9627930
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Perloff, Marjorie
Project Start
2003-04-01
Project End
2021-01-31
Budget Start
2019-02-01
Budget End
2021-01-31
Support Year
14
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Colorado State University-Fort Collins
Department
Miscellaneous
Type
Earth Sciences/Resources
DUNS #
785979618
City
Fort Collins
State
CO
Country
United States
Zip Code
80523
Thompson, Henry J; Jones, Lee W; Koch, Lauren G et al. (2017) Inherent aerobic capacity-dependent differences in breast carcinogenesis. Carcinogenesis 38:920-928
Jiang, Weiqin; Zhu, Zongjian; Thompson, Henry J (2013) Effects of limiting energy availability via diet and physical activity on mammalian target of rapamycin-related signaling in rat mammary carcinomas. Carcinogenesis 34:378-87
Zhu, Zongjian; Jiang, Weiqin; Zacher, Jarrod H et al. (2012) Effects of energy restriction and wheel running on mammary carcinogenesis and host systemic factors in a rat model. Cancer Prev Res (Phila) 5:414-22
Thompson, Henry J; McTiernan, Anne (2011) Weight cycling and cancer: weighing the evidence of intermittent caloric restriction and cancer risk. Cancer Prev Res (Phila) 4:1736-42
Mann, Phillip B; Jiang, Weiqin; Zhu, Zongjian et al. (2010) Wheel running, skeletal muscle aerobic capacity and 1-methyl-1-nitrosourea induced mammary carcinogenesis in the rat. Carcinogenesis 31:1279-83
Thompson, Henry J; Wolfe, Pamela; McTiernan, Anne et al. (2010) Wheel running-induced changes in plasma biomarkers and carcinogenic response in the 1-methyl-1-nitrosourea-induced rat model for breast cancer. Cancer Prev Res (Phila) 3:1484-92
Thompson, Henry J; Jiang, Weiqin; Zhu, Zongjian (2009) Candidate mechanisms accounting for effects of physical activity on breast carcinogenesis. IUBMB Life 61:895-901
Jiang, Weiqin; Zhu, Zongjian; Thompson, Henry J (2009) Effects of physical activity and restricted energy intake on chemically induced mammary carcinogenesis. Cancer Prev Res (Phila) 2:338-44
Zhu, Zongjian; Jiang, Weiqin; McGinley, John N et al. (2009) Energetics and mammary carcinogenesis: effects of moderate-intensity running and energy intake on cellular processes and molecular mechanisms in rats. J Appl Physiol (1985) 106:911-8
Zhu, Zongjian; Jiang, Weiqin; Sells, Jennifer L et al. (2008) Effect of nonmotorized wheel running on mammary carcinogenesis: circulating biomarkers, cellular processes, and molecular mechanisms in rats. Cancer Epidemiol Biomarkers Prev 17:1920-9

Showing the most recent 10 out of 12 publications