The liver is a frequent metastatic site of primary malignant tumors, suggesting that the liver itself provides a prometastatic microenvironment for growth of cancer cells. Hepatic stellate cells (HSC) are liver specific pericytes. Stimulated by tumor derived factors such as transforming growth factor beta (TGF-?), they transdifferentiate into myofibroblasts (MFB) that are thought to promote metastatic growth through multiple mechanisms, including growth factor and cytokine production, extracellular matrix deposition and stromal cell recruitment. Thus, a better understanding of the mechanisms governing HSC activation is of therapeutic significance for liver metastases. Our long-term objectives are to understand mechanisms that regulate HSC activation and metastatic growth in the liver. IQ motif containing GTPase activating protein 1 (IQGAP1) and vasodilator stimulated phosphoprotein (VASP) are two cytoskeleton regulatory proteins, not previously recognized as participants in growth factor dependent HSC activation. We have implanted tumor cells into murine livers and have found that IQGAP-/- mice developed more liver metastases and have higher densities of MFB within their metastases as compared to IQGAP+/+ mice. In vitro, knockdown of IQGAP1 by siRNA potentiates MFB transdifferentiation of HSC. Additionally, we have identified that both TGF-? receptor II (T2R- II) and VASP bind to the carboxyl terminus of IQGAP1 (a.a. 1503-1657), and that knockdown of VASP inhibits MFB transdifferentiation in vitro. These novel data support our central hypothesis: IQGAP1 suppresses TGF-?1 dependent activation of quiescent HSC into MFB, and this process is counterbalanced by VASP. Alterations in this counterbalance influence HSC activation within the hepatic tumor microenvironment thereby influencing metastatic growth.
The Specific Aims are: (1) to test that IQGAP1 inhibits TGF-?1 mediated HSC activation by binding to T2R-II and inhibiting T2R-II function. IQGAP1 and T2R-II mutants, kinase activity assays, and in vitro protein binding assays will be utilized to test this hypothesis. (2) to test that VASP promotes TGF-?1 mediated HSC activation by sequestering IQGAP1 from T2R-II in a phosphorylation dependent manner thereby antagonizing IQGAP1 inhibition of T2R-II function. Immunoprecipitation, immunofluorescence, kinase activity assays, VASP phosphomutants, and isothermal titration calorimetry will be used to test this hypothesis. (3) to determine that alterations in the counterbalance of IQGAP1 and VASP in HSC influence HSC activation in vivo and metastatic growth in the liver. This will be tested by two complementary animal liver metastasis models together with a state of the art in vivo tumor imaging technique. Thus, this proposal will delineate novel mechanisms whereby IQGAP1 and VASP act in concert to regulate TGF-?1 mediated HSC activation in vitro and in vivo and metastatic tumor growth, thereby, significantly advancing our understanding of TGF-?1 signaling, HSC biology and the prometastatic microenvironment of the liver.

Public Health Relevance

Hepatic stellate cells are liver specific pericytes and their activation within the hepatic tumor microenvironment is a prominent modifier of metastatic tumor growth in the liver. This proposal tests novel mechanisms whereby the cytoskeleton regulatory proteins IQGAP1 and VASP act in concert to regulate the TGF-?1 mediated HSC activation process and metastatic tumor growth in the liver. Mechanisms proposed may present important targets for reducing metastasis progression in the liver.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA160069-06
Application #
8897290
Study Section
Hepatobiliary Pathophysiology Study Section (HBPP)
Program Officer
Snyderwine, Elizabeth G
Project Start
2011-09-01
Project End
2017-07-31
Budget Start
2015-08-01
Budget End
2017-07-31
Support Year
6
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Type
Organized Research Units
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Dou, Changwei; Liu, Zhikui; Tu, Kangsheng et al. (2018) P300 Acetyltransferase Mediates Stiffness-Induced Activation of Hepatic Stellate Cells Into Tumor-Promoting Myofibroblasts. Gastroenterology 154:2209-2221.e14
Xiang, Xiaoyu; Wang, Yuanguo; Zhang, Hongbin et al. (2018) Vasodilator-stimulated phosphoprotein promotes liver metastasis of gastrointestinal cancer by activating a ?1-integrin-FAK-YAP1/TAZ signaling pathway. NPJ Precis Oncol 2:2
Tu, Kangsheng; Li, Jiachu; Verma, Vikas K et al. (2015) Vasodilator-stimulated phosphoprotein promotes activation of hepatic stellate cells by regulating Rab11-dependent plasma membrane targeting of transforming growth factor beta receptors. Hepatology 61:361-74
Kang, Ningling; Shah, Vijay H; Urrutia, Raul (2015) Membrane-to-Nucleus Signals and Epigenetic Mechanisms for Myofibroblastic Activation and Desmoplastic Stroma: Potential Therapeutic Targets for Liver Metastasis? Mol Cancer Res 13:604-12
Bi, Yan; Li, Jiachu; Ji, Baoan et al. (2014) Sphingosine-1-phosphate mediates a reciprocal signaling pathway between stellate cells and cancer cells that promotes pancreatic cancer growth. Am J Pathol 184:2791-802
Liu, Chunsheng; Li, Jiachu; Xiang, Xiaoyu et al. (2014) PDGF receptor-? promotes TGF-? signaling in hepatic stellate cells via transcriptional and posttranscriptional regulation of TGF-? receptors. Am J Physiol Gastrointest Liver Physiol 307:G749-59
Liu, Chunsheng; Billadeau, Daniel D; Abdelhakim, Haitham et al. (2013) IQGAP1 suppresses T?RII-mediated myofibroblastic activation and metastatic growth in liver. J Clin Invest 123:1138-56
Zou, Li; Cao, Sheng; Kang, Ningling et al. (2012) Fibronectin induces endothelial cell migration through ?1 integrin and Src-dependent phosphorylation of fibroblast growth factor receptor-1 at tyrosines 653/654 and 766. J Biol Chem 287:7190-202