It is estimated that 80 percent of significant hearing impairment in the U.S. is sensorineural or """"""""nerve"""""""" deafness that usually originates from hair cell losses. Deficits in the sensory hair cells that convert sound and balance stimuli into neural signals have been considered irreversible, because the production of hair cells ends before birth in human ears. However, hair cells are produced postembryonically in the ears of cold-blooded animals and birds; in some, millions of hair cells are added to the ear throughout life. During past cycles of this grant it was discovered that hair cells damaged in those animals could be replaced through regenerative proliferation that was triggered by trauma. The machinery for regenerative proliferation also can operate in damaged balance organs from the ears of adult mammals, including 60-year-old humans, but that only occurs at low levels. This request for renewal of a project in its 18th year proposes to continue investigations that focus on identifying and understanding the signaling mechanisms that control the production of cells and the processes that lead to their specialization as sensory hair cells in embryonic and postembryonic ears. Those objectives will be approached in pharmacological tests, in immunohistochemistry and in situ hybridization, in expression screens that are identifying the specific molecules that function in those control mechanisms in the ear, in tests that will utilize cells derived from the ears of mice and humans and in tests of the hypothesized mechanisms in mouse mutants. The information sought is essential for the identification of targets for the development of therapeutic approaches to stimulate and control mechanisms of self-repair in the ears of mammals. The goals of this research directly pertain to possible prevention of and recovery from sensorineural hearing loss and balance dysfunctions that contribute to prevalent communication disorders and to falls by elderly individuals. They also appear likely to lead to improved understanding of the development of normal and abnormal auditory and vestibular function in human ears.

National Institute of Health (NIH)
National Institute on Deafness and Other Communication Disorders (NIDCD)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-IFCN-6 (01))
Program Officer
Freeman, Nancy
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Virginia
Schools of Medicine
United States
Zip Code
Thiede, Benjamin R; Corwin, Jeffrey T (2014) Permeation of fluorophore-conjugated phalloidin into live hair cells of the inner ear is modulated by P2Y receptors. J Assoc Res Otolaryngol 15:13-30
Mann, Zoƫ F; Thiede, Benjamin R; Chang, Weise et al. (2014) A gradient of Bmp7 specifies the tonotopic axis in the developing inner ear. Nat Commun 5:3839
Burns, Joseph C; Corwin, Jeffrey T (2014) Responses to cell loss become restricted as the supporting cells in mammalian vestibular organs grow thick junctional actin bands that develop high stability. J Neurosci 34:1998-2011
Burns, Joseph C; Corwin, Jeffrey T (2013) A historical to present-day account of efforts to answer the question: ""what puts the brakes on mammalian hair cell regeneration?"". Hear Res 297:52-67
Burns, Joseph C; Collado, Maria Sol; Oliver, Eric R et al. (2013) Specializations of intercellular junctions are associated with the presence and absence of hair cell regeneration in ears from six vertebrate classes. J Comp Neurol 521:1430-48
Bermingham-McDonogh, Olivia; Corwin, Jeffrey T; Hauswirth, William W et al. (2012) Regenerative medicine for the special senses: restoring the inputs. J Neurosci 32:14053-7
Burns, Joseph C; On, Doan; Baker, Wendy et al. (2012) Over half the hair cells in the mouse utricle first appear after birth, with significant numbers originating from early postnatal mitotic production in peripheral and striolar growth zones. J Assoc Res Otolaryngol 13:609-27
Collado, Maria Sol; Burns, Joseph C; Meyers, Jason R et al. (2011) Variations in shape-sensitive restriction points mirror differences in the regeneration capacities of avian and mammalian ears. PLoS One 6:e23861
Collado, Maria Sol; Thiede, Benjamin R; Baker, Wendy et al. (2011) The postnatal accumulation of junctional E-cadherin is inversely correlated with the capacity for supporting cells to convert directly into sensory hair cells in mammalian balance organs. J Neurosci 31:11855-66
Goodyear, Richard J; Legan, P Kevin; Christiansen, Jeffrey R et al. (2010) Identification of the hair cell soma-1 antigen, HCS-1, as otoferlin. J Assoc Res Otolaryngol 11:573-86

Showing the most recent 10 out of 21 publications