Models of hair cell mechanotransduction have existed for more than 30 years based on groundbreaking work done in lower vertebrates. The models, largely based on physiological data, have shaped the thinking about hair cell mechanotransduction for a generation. Recent advances both challenge and support these basic tenets by providing new insights into the molecular machinery involved in mechanotransduction. Technological advancements now allow us to investigate mechanotransduction at the single cilia and molecular level. This is necessary to bring new data into perspective with existing, traditional theories. During the past funding period, we made use of the technological advancements and developed new methods that will allow us to directly probe mammalian mechanotransduction with unprecedented resolution. These methods include stimulation of hair bundles at high rates, imaging of bundle motion at high rates (>250kHz), imaging of fluorophores with a swept field confocal system at higher rates (500-2000 fps) and we have expanded our ability to do electrophysiology, and live hair bundle imaging followed by immunohistochemical or field emission SEM on these same bundles. With these tools we will determine the functional significance of tonotopic variations observed in the mechanotransduction process, testing the hypothesis that activation and adaptation kinetics provide tuning to outer hair cells. We will directly probe the function of USH1 syndrome proteins localized to the upper tip-link insertion point, near the tops of stereocilia. We will address new hypotheses regarding the function and molecular underpinnings of slow adaptation. We will directly couple morphological measurements with functional outcomes to determine how inner hair cell hair bundles are coupled together. Doing this is fundamental to understanding the complexity that is the mechanotransduction process.

Public Health Relevance

Both auditory and vestibular hair cells convert mechanical vibration into electrical signals using a specialized organelle, the hair bundle. Central to this conversion is a mechanically gated ion channel located at the very tops of stereocilia. Although the molecular identity of this channel remains a mystery, a variety of accessory proteins have been identified that are critical for the proper functioning of this channel;many proteins were identified through genetic techniques where misexpression leads to significant hearing disorders. The traditional view of the interaction between these proteins that gave rise to long standing theories about activation and adaptation was brought into question by the localization of the mechanosensitive transduction channel to a site at the top and not along the upper side of stereocilia. Understanding these molecular mechanisms will provide us with better tools and more sites for intervention in our attempts to prevent, repair, or regenerate the hearing organ. Although the majority of this work is at the basic science cellular and molecular level, it is this work that establishes the foundation upon which translational approaches can be developed. Over the next five years our work will determine the molecular events required for channel activation and adaptation;it will further our understanding of the role of specific proteins in ths process. In addition, the role of mechanotransduction in providing frequency selectivity will be directly addressed. And finally this work will provide a direct assessment of how the inner hair cell hair bundle stereocilia interact with each other to enhance sensitivity to fluid flow.

National Institute of Health (NIH)
National Institute on Deafness and Other Communication Disorders (NIDCD)
Research Project (R01)
Project #
Application #
Study Section
Auditory System Study Section (AUD)
Program Officer
Cyr, Janet
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
Schools of Medicine
United States
Zip Code
Effertz, Thomas; Becker, Lars; Peng, Anthony W et al. (2017) Phosphoinositol-4,5-Bisphosphate Regulates Auditory Hair-Cell Mechanotransduction-Channel Pore Properties and Fast Adaptation. J Neurosci 37:11632-11646
Larsen, T; Doll, J C; Loizeau, F et al. (2017) Rise Time Reduction of Thermal Actuators Operated in Air and Water through Optimized Pre-Shaped Open-Loop Driving. J Micromech Microeng 27:
Kazmierczak, Marcin; Kazmierczak, Piotr; Peng, Anthony W et al. (2017) Pejvakin, a Candidate Stereociliary Rootlet Protein, Regulates Hair Cell Function in a Cell-Autonomous Manner. J Neurosci 37:3447-3464
Peng, Anthony W; Gnanasambandam, Radhakrishnan; Sachs, Frederick et al. (2016) Adaptation Independent Modulation of Auditory Hair Cell Mechanotransduction Channel Open Probability Implicates a Role for the Lipid Bilayer. J Neurosci 36:2945-56
Beurg, Maryline; Goldring, Adam C; Ricci, Anthony J et al. (2016) Development and localization of reverse-polarity mechanotransducer channels in cochlear hair cells. Proc Natl Acad Sci U S A 113:6767-72
Sundaresan, Srividya; Kong, Jee-Hyun; Fang, Qing et al. (2016) Thyroid hormone is required for pruning, functioning and long-term maintenance of afferent inner hair cell synapses. Eur J Neurosci 43:148-61
Peng, Anthony W; Ricci, Anthony J (2016) Glass Probe Stimulation of Hair Cell Stereocilia. Methods Mol Biol 1427:487-500
Effertz, Thomas; Scharr, Alexandra L; Ricci, Anthony J (2015) The how and why of identifying the hair cell mechano-electrical transduction channel. Pflugers Arch 467:73-84
Nam, Jong-Hoon; Peng, Anthony W; Ricci, Anthony J (2015) Underestimated sensitivity of mammalian cochlear hair cells due to splay between stereociliary columns. Biophys J 108:2633-47
Huth, Markus E; Han, Kyu-Hee; Sotoudeh, Kayvon et al. (2015) Designer aminoglycosides prevent cochlear hair cell loss and hearing loss. J Clin Invest 125:583-92

Showing the most recent 10 out of 46 publications