Impairment of hearing is the most common sensory deficit in human populations and affects about one of every 1,000 children. The mouse is an excellent model for studying human hearing disorders because of the anatomical and functional similarities between the mouse and human inner ears. In mice, mutations affecting the vestibular system of the inner ear often result in a characteristic circling or head bobbing phenotype; many of these mutations also affect the cochlea and cause deafness. Two independent spontaneous mutations responsible for such abnormal behavior were discovered at The Jackson Laboratory and mapped to Chromosomes (Chr) 9 and 17, at positions where no other mouse mutations or deafness genes have been located. Both mutations when homozygous cause deafness, as assessed by the absence of auditory brainstem responses to stimuli greater than 99 dB SPL. Preliminary light microscopic analysis of cross-sections from cochleas indicate that both mutations cause neuroepithelial defects. Mouse mutations with similar defects have been shown to be models for human nonsyndromic hearing loss. On the basis of known human-mouse genetic map relationships, the new mouse mutations may be homologous to the human nonsyndromic deafness genes DFNB16 and DFNA13. The object of this proposal is to clone both of the mouse mutations by the positional-candidate gene approach. Preliminary mapping results have localized each mutation to within a 5 cM interval. These intervals will be further refined to less than 0.2 cM by recombinational analysis of extended linkage crosses. Physical maps will then be constructed and candidate genes within these regions will be screened for mutations. The human homologues of the genes shown to be mutated in mice will be identified for evaluation as candidates for human deafness. Mouse mutations enable studies of inner ear anatomy and development that are not possible in humans; such studies help elucidate pathways critical for the normal development and physiology of the ear. Another objective of this proposal is to establish a time course of pathology and gene expression in inner ears from mutant and control mice. The molecular identification and pathological characterization of these two new mouse mutations causing deafness will provide valuable models for understanding causes of hearing impairment in humans and for developing possible treatments and therapies.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC004301-02
Application #
6342368
Study Section
Mammalian Genetics Study Section (MGN)
Program Officer
Watson, Bracie
Project Start
2000-01-01
Project End
2004-12-31
Budget Start
2001-01-01
Budget End
2001-12-31
Support Year
2
Fiscal Year
2001
Total Cost
$256,177
Indirect Cost
Name
Jackson Laboratory
Department
Type
DUNS #
042140483
City
Bar Harbor
State
ME
Country
United States
Zip Code
04609
Tarchini, Basile; Longo-Guess, Chantal; Tian, Cong et al. (2018) A spontaneous mouse deletion in Mctp1 uncovers a long-range cis-regulatory region crucial for NR2F1 function during inner ear development. Dev Biol 443:153-164
Johnson, Kenneth R; Gagnon, Leona H; Tian, Cong et al. (2018) Deletion of a Long-Range Dlx5 Enhancer Disrupts Inner Ear Development in Mice. Genetics 208:1165-1179
Tian, Cong; Gagnon, Leona H; Longo-Guess, Chantal et al. (2017) Hearing loss without overt metabolic acidosis in ATP6V1B1 deficient MRL mice, a new genetic model for non-syndromic deafness with enlarged vestibular aqueducts. Hum Mol Genet 26:3722-3735
Ohlemiller, Kevin K; Jones, Sherri M; Johnson, Kenneth R (2016) Application of Mouse Models to Research in Hearing and Balance. J Assoc Res Otolaryngol 17:493-523
Tian, Cong; Harris, Belinda S; Johnson, Kenneth R (2016) Ectopic Mineralization and Conductive Hearing Loss in Enpp1asj Mutant Mice, a New Model for Otitis Media and Tympanosclerosis. PLoS One 11:e0168159
Johnson, Kenneth R; Gagnon, Leona H; Chang, Bo (2016) A hypomorphic mutation of the gamma-1 adaptin gene (Ap1g1) causes inner ear, retina, thyroid, and testes abnormalities in mice. Mamm Genome 27:200-12
Calton, Melissa A; Lee, Dasom; Sundaresan, Srividya et al. (2014) A lack of immune system genes causes loss in high frequency hearing but does not disrupt cochlear synapse maturation in mice. PLoS One 9:e94549
Salles, Felipe T; Andrade, Leonardo R; Tanda, Soichi et al. (2014) CLIC5 stabilizes membrane-actin filament linkages at the base of hair cell stereocilia in a molecular complex with radixin, taperin, and myosin VI. Cytoskeleton (Hoboken) 71:61-78
Johnson, Kenneth R; Gagnon, Leona H; Longo-Guess, Chantal M et al. (2014) Hearing impairment in hypothyroid dwarf mice caused by mutations of the thyroid peroxidase gene. J Assoc Res Otolaryngol 15:45-55
Xiong, Wei; Grillet, Nicolas; Elledge, Heather M et al. (2012) TMHS is an integral component of the mechanotransduction machinery of cochlear hair cells. Cell 151:1283-95

Showing the most recent 10 out of 25 publications