The olfactory system is a model system for the study of many aspects of neuronal circuits and function. A central question that arises in many sensory systems, including the olfactory system is the extent to which patterns of spiking (as opposed to just the rate of spiking) are involved in the coding of sensory information. In recent years, considerable attention has been paid to this issue in the olfactory system. The work we describe in this proposal investigates cellular and circuit-level mechanisms that may make such temporal coding possible, focusing on the role of granule cell-mediated inhibition in regulating mitral cell firing. Despite years of work on mechanisms and function of spike time reliability and precision in many brain areas, little or no work has focused on the role of inhibition in generating accurate and reliable spike times. Clearly, temporal coding of spiking in excitatory neurons will require cooperation of interneurons and the nature of this cooperation is the focus of the experiments that we propose here. By imaging large populations of olfactory bulb granule cells in vitro we have shown that glomerular stimulation results in long latency, prolonged firing of granule cells, indicating that granule cell activity evolves over periods of seconds following a single stimulus. This long-lasting inhibition will be critical for the evolution of neuronal activity in the olfactory bulb. Understanding the mechanisms by which it is generated and regulated will be essential to understanding the transformations of odor-evoked activity in the bulb. Thus, we propose experiments to evaluate the hypothesis that long latency, granule cell mediated inhibition regulates the timing of mitral cell activity for hundreds of milliseconds following mitral cell activation.

Public Health Relevance

Despite years of work, scientists still do not understand the nature of the signals sent from one neuron to another and what aspects of neural activity are part of the signal, vs. part of the noise. Experiments in this proposal investigate some features of the temporal patterns of neuronal activity in the olfactory bulb and seek to determine the cellular and circuit level mechanisms that generate these firing patterns. Such studies are critical for understanding which aspects of neuronal activity are involved in signaling from one neuron to the next.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC005798-08
Application #
7788146
Study Section
Somatosensory and Chemosensory Systems Study Section (SCS)
Program Officer
Davis, Barry
Project Start
2002-09-23
Project End
2013-03-31
Budget Start
2010-04-01
Budget End
2011-03-31
Support Year
8
Fiscal Year
2010
Total Cost
$267,887
Indirect Cost
Name
Carnegie-Mellon University
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
052184116
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Burton, Shawn D; LaRocca, Greg; Liu, Annie et al. (2017) Olfactory Bulb Deep Short-Axon Cells Mediate Widespread Inhibition of Tufted Cell Apical Dendrites. J Neurosci 37:1117-1138
Case, Daniel T; Burton, Shawn D; Gedeon, Jeremy Y et al. (2017) Layer- and cell type-selective co-transmission by a basal forebrain cholinergic projection to the olfactory bulb. Nat Commun 8:652
Zhou, Pengcheng; Burton, Shawn D; Snyder, Adam C et al. (2015) Establishing a Statistical Link between Network Oscillations and Neural Synchrony. PLoS Comput Biol 11:e1004549
Tripathy, Shreejoy J; Burton, Shawn D; Geramita, Matthew et al. (2015) Brain-wide analysis of electrophysiological diversity yields novel categorization of mammalian neuron types. J Neurophysiol 113:3474-89
Burton, Shawn D; Urban, Nathaniel N (2015) Rapid Feedforward Inhibition and Asynchronous Excitation Regulate Granule Cell Activity in the Mammalian Main Olfactory Bulb. J Neurosci 35:14103-22
Yu, Yiyi; Burton, Shawn D; Tripathy, Shreejoy J et al. (2015) Postnatal development attunes olfactory bulb mitral cells to high-frequency signaling. J Neurophysiol 114:2830-42
Padmanabhan, Krishnan; Urban, Nathaniel N (2014) Disrupting information coding via block of 4-AP-sensitive potassium channels. J Neurophysiol 112:1054-66
Tripathy, Shreejoy J; Savitskaya, Judith; Burton, Shawn D et al. (2014) NeuroElectro: a window to the world's neuron electrophysiology data. Front Neuroinform 8:40
Burton, Shawn D; Urban, Nathaniel N (2014) Greater excitability and firing irregularity of tufted cells underlies distinct afferent-evoked activity of olfactory bulb mitral and tufted cells. J Physiol 592:2097-118
Tripathy, Shreejoy J; Padmanabhan, Krishnan; Gerkin, Richard C et al. (2013) Intermediate intrinsic diversity enhances neural population coding. Proc Natl Acad Sci U S A 110:8248-53

Showing the most recent 10 out of 29 publications