There are a limited number of options for clinical surgeons who are faced with reconstructing bone defects that result from congenital anomalies, trauma, infection, and oncologic resection. Current grafting techniques and materials each have their own limitations and drawbacks. For this reason, we aim to create improved bone grafting materials that will act as scaffolds to recruit cells from surrounding tissues and promote natural bone regeneration processes. Using a versatile and robust thiol-ene polymerization scheme developed in the Anseth and Bowman laboratories, we are able to create 3-dimensional matrices containing simple cell adhesion mimics and enzymatically-degradable linkages. As a result, these materials support cellular infiltration and are replaced as new tissue is formed by the body. The research proposed herein will aim to engineer these grafting materials for bone regeneration purposes, first by increasing the ability of cells from the body to migrate into these materials, and then by incorporating signals that tell the invading cells to become bone.
Three specific aims are outlined:
Aim I : Identify biological epitopes and functionalities that influence the rate of migration of cells into and through thiol-ene polymer scaffolds.
Aim II : Develop thiol-ene polymer scaffolds that promote osteogenic differentiation and deposition of a mineralized matrix.
Aim III : Demonstrate the ability of injectable polymer scaffolds developed in Aims I &II to promote bone regeneration in vivo. Successful completion of these Aims should significantly advance our understanding of how to design synthetic polymer scaffolds to enhance natural bone regeneration processes, and this material platform should be readily tailored for applications towards regenerating tissues beyond bone, as well as providing specific advantages for future directions in the design of cell delivery vehicles.

Public Health Relevance

The Anseth Group aims to develop synthetic materials for repairing bone defects resulting from congenital anomalies, trauma, infection, and cancer. Our approach is to create 3-dimensional matrices that will act as scaffolds to recruit cells from surrounding tissues and promote natural bone regeneration processes, creating an improved and bioactive bone graft material.

National Institute of Health (NIH)
National Institute of Dental & Craniofacial Research (NIDCR)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-MOSS-C (03))
Program Officer
Lumelsky, Nadya L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Colorado at Boulder
Engineering (All Types)
Schools of Engineering
United States
Zip Code
Shin, Della S; Tokuda, Emi Y; Leight, Jennifer L et al. (2018) Synthesis of microgel sensors for spatial and temporal monitoring of protease activity. ACS Biomater Sci Eng 4:378-387
Rosales, Adrianne M; Rodell, Christopher B; Chen, Minna H et al. (2018) Reversible Control of Network Properties in Azobenzene-Containing Hyaluronic Acid-Based Hydrogels. Bioconjug Chem 29:905-913
Brown, Tobin E; Carberry, Benjamin J; Worrell, Brady T et al. (2018) Photopolymerized dynamic hydrogels with tunable viscoelastic properties through thioester exchange. Biomaterials 178:496-503
Tang, Shengchang; Ma, Hao; Tu, Hsiu-Chung et al. (2018) Adaptable Fast Relaxing Boronate-Based Hydrogels for Probing Cell-Matrix Interactions. Adv Sci (Weinh) 5:1800638
Ma, Hao; Killaars, Anouk R; DelRio, Frank W et al. (2017) Myofibroblastic activation of valvular interstitial cells is modulated by spatial variations in matrix elasticity and its organization. Biomaterials 131:131-144
Rosales, Adrianne M; Vega, Sebastián L; DelRio, Frank W et al. (2017) Hydrogels with Reversible Mechanics to Probe Dynamic Cell Microenvironments. Angew Chem Int Ed Engl 56:12132-12136
Brown, Tobin E; Anseth, Kristi S (2017) Spatiotemporal hydrogel biomaterials for regenerative medicine. Chem Soc Rev 46:6532-6552
Caldwell, Alexander S; Campbell, Gavin T; Shekiro, Kelly M T et al. (2017) Clickable Microgel Scaffolds as Platforms for 3D Cell Encapsulation. Adv Healthc Mater 6:
Yang, Chun; DelRio, Frank W; Ma, Hao et al. (2016) Spatially patterned matrix elasticity directs stem cell fate. Proc Natl Acad Sci U S A 113:E4439-45
Magin, Chelsea M; Alge, Daniel L; Anseth, Kristi S (2016) Bio-inspired 3D microenvironments: a new dimension in tissue engineering. Biomed Mater 11:022001

Showing the most recent 10 out of 70 publications