The molecular nature of insulin resistance in human muscle is still incompletely defined. Recent results from mass spectrometry experiments performed to analyze serine/threonine phosphorylation of IRS-1 from insulin resistant human muscle now compel us to discover how changes in S/T phosphorylation in human insulin resistance affect the association of IRS-1 with its binding partners. Toward this, we propose 1) to use Surface Plasmon Resonance techniques to determine how site-specific serine/threonine phosphorylation of IRS-1 alters the kinetics of the interaction of IRS-1 with its binding partners. We will employ surface Plasmon resonance techniques to quantify the kinetics of association of IRS-1 binding partners with synthetic tyrosine- phosphorylated IRS-1 peptides that also are phosphorylated at candidate S/T residues informed by our previous studies. In addition, reversible acetylation of proteins is gaining prominence as a mechanism that regulates mitochondrial. Preliminary data indicate that acetylation of mitochondrial proteins in humans is regulated by muscle contraction and is dysregulated in insulin resistance. Therefore we also propose 2) to use a combination of clinical research and mass spectrometry techniques to determine how the cytosolic and mitochondrial protein acetylomes are regulated by muscle contraction in insulin sensitive and resistant human volunteers. We will test the hypothesis that mitochondrial protein acetylation is decreased to a greater degree following a bout of exercise in insulin sensitive than in insulin resistant human muscle. Using these techniques we also propose 3) to determine how acetylation of mitochondrial adenine nucleotide translocase (ANT1) at lysines 10, 23, and 92 regulates ANT1 structure and function. Finally, we propose 4) to use a combination of molecular modeling and in vitro assays together with the approach developed in Aim 3 to characterize the role of acetylation in other mitochondrial proteins. Protein targets for this aim will be prioritized based on the potential role of the protein in insulin resistance or mitochondrial function as well as dysregulation of its acetylation state in insulin resistant muscle.

Public Health Relevance

Insulin resistance underlies the major public health problems of obesity, type 2 diabetes mellitus, and cardiovascular disease. Understanding the molecular nature of this abnormality in humans will be a key to developing and assessing the effectiveness of new treatments for these diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK047936-18
Application #
8610291
Study Section
Clinical and Integrative Diabetes and Obesity Study Section (CIDO)
Program Officer
Laughlin, Maren R
Project Start
1994-09-30
Project End
2017-01-31
Budget Start
2014-02-01
Budget End
2015-01-31
Support Year
18
Fiscal Year
2014
Total Cost
$543,251
Indirect Cost
$133,870
Name
Arizona State University-Tempe Campus
Department
Other Basic Sciences
Type
Schools of Arts and Sciences
DUNS #
943360412
City
Tempe
State
AZ
Country
United States
Zip Code
85287
Luo, Moulun; Mengos, April E; Ma, Wuqiong et al. (2017) Characterization of the novel protein KIAA0564 (Von Willebrand Domain-containing Protein 8). Biochem Biophys Res Commun 487:545-551
Shaibi, Gabriel; Singh, Davinder; De Filippis, Eleanna et al. (2016) The Sangre Por Salud Biobank: Facilitating Genetic Research in an Underrepresented Latino Community. Public Health Genomics 19:229-38
Xie, Xitao; Yi, Zhengping; Sinha, Sandeep et al. (2016) Proteomics analyses of subcutaneous adipocytes reveal novel abnormalities in human insulin resistance. Obesity (Silver Spring) 24:1506-14
Luo, Moulun; Mengos, April E; Mandarino, Lawrence J et al. (2016) Association of liprin ?-1 with kank proteins in melanoma. Exp Dermatol 25:321-3
McLean, Carrie S; Mielke, Clinton; Cordova, Jeanine M et al. (2015) Gene and MicroRNA Expression Responses to Exercise; Relationship with Insulin Sensitivity. PLoS One 10:e0127089
Boyle, Kristen E; Hwang, Hyonson; Janssen, Rachel C et al. (2014) Gestational diabetes is characterized by reduced mitochondrial protein expression and altered calcium signaling proteins in skeletal muscle. PLoS One 9:e106872
Miranda, Danielle N; Coletta, Dawn K; Mandarino, Lawrence J et al. (2014) Increases in insulin sensitivity among obese youth are associated with gene expression changes in whole blood. Obesity (Silver Spring) 22:1337-44
Mielke, Clinton J; Mandarino, Lawrence J; Dinu, Valentin (2014) AMASS: a database for investigating protein structures. Bioinformatics 30:1595-600
Mielke, Clinton; Lefort, Natalie; McLean, Carrie G et al. (2014) Adenine nucleotide translocase is acetylated in vivo in human muscle: Modeling predicts a decreased ADP affinity and altered control of oxidative phosphorylation. Biochemistry 53:3817-29
DeMenna, Jacob; Puppala, Sobha; Chittoor, Geetha et al. (2014) Association of common genetic variants with diabetes and metabolic syndrome related traits in the Arizona Insulin Resistance registry: a focus on Mexican American families in the Southwest. Hum Hered 78:47-58

Showing the most recent 10 out of 66 publications