This proposal requests the renewal of our major source of long-standing funding for investigating transcription, chromatin, and epigenetics in pathophysiological mechanisms underlying pancreatic diseases. Our studies will directly extend our knowledge on common diseases, such as chronic pancreatitis and pancreatic ductal adenocarcinoma (PDAC), both painful and incurable disorders of the exocrine pancreas for which effective prevention protocols and treatments remain to be fully developed. Our OVERALL OBJECTIVE is to investigate how epigenomic regulators work as nuclear effectors of common mutations associated with human pancreatic diseases. Although we believe that our concepts and methodologies can be applied to any ?mutation-epigenetic-disease triad?, we will focus on understanding histone-based pathways as effectors of KRAS in established genetically-engineered mouse and human patient-derived models of pancreatic diseases. Notably, while similar to genetic alterations epigenetic changes are inheritable, they can be reversible by pharmacological treatment. Our PRELIMINARY DATA report the discovery of a key role for the Histone H3 Lysine 9 (H3K9) methylation pathway and its associated methyltransferase, EHMT2, as an epigenetic regulator of oncogenic KRAS. EHMT2 together with its paralog EHMT1 are the main histone lysine methyltransferases responsible for catalyzing histone H3K9 dimethylation. However, no information is known regarding the function of EHMT1 and EHMT2, either separately or as a complex, in relationship to pancreas physiology or pancreatic diseases. We will test a combined, mechanistic and translational CENTRAL HYPOTHESIS, namely that the EHMT1/EHMT2 complex works as an epigenetic effector of KRAS during ADM and PanIN formation as well as their progression by pancreatitis.
Our SPECIFIC AIMS are: 1. To determine mechanisms by which inactivation of the EHMT1/2 complex antagonizes KRASG12D-mediated ADM and PanIN formation alone and in pancreatitis; 2. To evaluate biochemical mechanisms by which KRAS signaling in pancreatic cells regulates the enzymatic activity of the EHMT1/2 complex; and 3. To discover epigenetic mechanisms by which the EHMT1/2 complex mediates the effects of KRAS. We will use an extensive battery of cellular, molecular and whole organism experiments, executed in a highly collaborative environment with state-of-the-art techniques. By focusing on better understanding epigenomic pathways that serve as effectors downstream of common mutations in the pancreas, our design seeks to maximize the yield of rapidly translatable mechanistic knowledge. Discoveries from this proposal will have a valuable positive impact because the application of concepts, techniques, and drugs from the field of epigenomics is anticipated to provide new opportunities for the management of patients affected by pancreatic diseases, thereby bearing significant biomedical relevance.

Public Health Relevance

This proposal is significant to public health as it examines new mechanisms by which genetic mutation and epigenetic, or 'above genetic', events cooperate to regulate cell growth underlying two major diseases of the exocrine pancreas, pancreatitis and pancreatic cancer, which are a substantial health burden in the USA with high mortality rates. These efforts to understand the key ways that these diseases seize pathways to control harmful gene expression will help build the rationale for the development and evaluation of new approaches for better patient therapies. Furthermore, the proposed investigations are directly relevant to NIDDK's commitment to conduct and support medical research on digestive diseases to improve people's health and quality of life.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
2R01DK052913-20A1
Application #
9969736
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Serrano, Jose
Project Start
1998-09-25
Project End
2023-12-31
Budget Start
2020-04-01
Budget End
2020-12-31
Support Year
20
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Medical College of Wisconsin
Department
Surgery
Type
Schools of Medicine
DUNS #
937639060
City
Milwaukee
State
WI
Country
United States
Zip Code
53226
Colón-Caraballo, Mariano; Torres-Reverón, Annelyn; Soto-Vargas, John Lee et al. (2018) Effects of histone methyltransferase inhibition in endometriosis. Biol Reprod 99:293-307
Lomberk, Gwen; Blum, Yuna; Nicolle, Rémy et al. (2018) Distinct epigenetic landscapes underlie the pathobiology of pancreatic cancer subtypes. Nat Commun 9:1978
Seo, Seungmae; Mathison, Angela; Grzenda, Adrienne et al. (2018) Mechanisms Underlying the Regulation of HP1? by the NGF-PKA Signaling Pathway. Sci Rep 8:15077
Xiang, Xiaoyu; Wang, Yuanguo; Zhang, Hongbin et al. (2018) Vasodilator-stimulated phosphoprotein promotes liver metastasis of gastrointestinal cancer by activating a ?1-integrin-FAK-YAP1/TAZ signaling pathway. NPJ Precis Oncol 2:2
Zimmermann, Michael T; Urrutia, Raul; Oliver, Gavin R et al. (2017) Molecular modeling and molecular dynamic simulation of the effects of variants in the TGFBR2 kinase domain as a paradigm for interpretation of variants obtained by next generation sequencing. PLoS One 12:e0170822
Blackburn, Patrick R; Williams, Monique; Cousin, Margot A et al. (2017) A novel de novo frameshift deletion in EHMT1 in a patient with Kleefstra Syndrome results in decreased H3K9 dimethylation. Mol Genet Genomic Med 5:141-146
Cousin, Margot A; Zimmermann, Michael T; Mathison, Angela J et al. (2017) Functional validation reveals the novel missense V419L variant in TGFBR2 associated with Loeys-Dietz syndrome (LDS) impairs canonical TGF-? signaling. Cold Spring Harb Mol Case Stud 3:
Kalinec, Gilda M; Lomberk, Gwen; Urrutia, Raul A et al. (2017) Resolution of Cochlear Inflammation: Novel Target for Preventing or Ameliorating Drug-, Noise- and Age-related Hearing Loss. Front Cell Neurosci 11:192
Blackburn, Patrick R; Tischer, Alexander; Zimmermann, Michael T et al. (2017) A Novel Kleefstra Syndrome-associated Variant That Affects the Conserved TPLX Motif within the Ankyrin Repeat of EHMT1 Leads to Abnormal Protein Folding. J Biol Chem 292:3866-3876
Kaiwar, Charu; Zimmermann, Michael T; Ferber, Matthew J et al. (2017) Novel NR2F1 variants likely disrupt DNA binding: molecular modeling in two cases, review of published cases, genotype-phenotype correlation, and phenotypic expansion of the Bosch-Boonstra-Schaaf optic atrophy syndrome. Cold Spring Harb Mol Case Stud 3:

Showing the most recent 10 out of 129 publications