Transcriptional suppression of the function of the Type II nuclear receptor (NR) superfamily member and heterodimer partner to ~17 NRs in liver-the Retinoid X Receptor ? (RXR?, NR2B1)-underlies most of the inflammation-mediated changes in liver biology, including a suppression of bile acid (BA) transport. The overall unifying hypothesis is that inflammatory cell signaling pathways modulate RXR? activities by post-translational modification (PTM)->altered genome-wide RXR? chromatin site occupancy->reduced RXR? heterodimer function->broad changes in RXR?-dependent gene expression in liver->increased BA retention->exacerbation of liver damage. These studies are aimed at two PTMs-phosphorylation of S260 and SUMOylation of K108. Moreover, detailed ChIP-SEQ mapping of the alterations in RXR? genome wide binding in response to bile acids and inflammation in mouse liver, along with potential attenuation with select therapeutic NR ligands will provide insight into the whole liver changes in RXR? heterodimer site chromatin occupancy, and the effectiveness of NR ligands.

Public Health Relevance

The liver responds to inflammation by changing the expression of thousands of genes, due to changes in the function of a host of nuclear proteins. These nuclear proteins drive liver gene expression for many core functions including the handling of sugars, fats, and bile formation. How they are altered in response to inflammation is poorly understood. These studies are aimed at uncovering the mechanisms and targets of inflammation in liver, with the expectation to provide a detailing mapping and opportunities for therapeutic intervention.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Hepatobiliary Pathophysiology Study Section (HBPP)
Program Officer
Burgess-Beusse, Bonnie L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Emory University
Schools of Medicine
United States
Zip Code
Sultan, Mutaz; Rao, Anuradha; Elpeleg, Orly et al. (2018) Organic solute transporter-? (SLC51B) deficiency in two brothers with congenital diarrhea and features of cholestasis. Hepatology 68:590-598
Arab, Juan P; Karpen, Saul J; Dawson, Paul A et al. (2017) Bile acids and nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives. Hepatology 65:350-362
Kosters, Astrid; Abebe, Demesew F; Felix, Julio C et al. (2016) Inflammation-associated upregulation of the sulfated steroid transporter Slc10a6 in mouse liver and macrophage cell lines. Hepatol Res 46:794-803
Rao, Anuradha; Kosters, Astrid; Mells, Jamie E et al. (2016) Inhibition of ileal bile acid uptake protects against nonalcoholic fatty liver disease in high-fat diet-fed mice. Sci Transl Med 8:357ra122
Dawson, Paul A; Karpen, Saul J (2015) Intestinal transport and metabolism of bile acids. J Lipid Res 56:1085-99
Karpen, Saul J; Dawson, Paul A (2015) Not all (bile acids) who wander are lost: the first report of a patient with an isolated NTCP defect. Hepatology 61:24-7
Desai, Moreshwar S; Eblimit, Zeena; Thevananther, Sundararajah et al. (2015) Cardiomyopathy reverses with recovery of liver injury, cholestasis and cholanemia in mouse model of biliary fibrosis. Liver Int 35:1464-77
Dawson, Paul A; Karpen, Saul J (2014) Bile acids reach out to the spinal cord: new insights to the pathogenesis of itch and analgesia in cholestatic liver disease. Hepatology 59:1638-41
Kosters, Astrid; Felix, Julio C; Desai, Moreshwar S et al. (2014) Impaired bile acid handling and aggravated liver injury in mice expressing a hepatocyte-specific RXR? variant lacking the DNA-binding domain. J Hepatol 60:362-9
El Kasmi, Karim C; Anderson, Aimee L; Devereaux, Michael W et al. (2013) Phytosterols promote liver injury and Kupffer cell activation in parenteral nutrition-associated liver disease. Sci Transl Med 5:206ra137

Showing the most recent 10 out of 32 publications