A decline in functional ?-cell mass and subsequent inability to maintain adequate glycemic control are hallmarks of both type 1 and type 2 diabetes. Innovative therapeutic approaches are aimed at preserving and restoring functional ?-cell mass in diabetes; however, strategies to safely expand ?-cell mass remain to be identified. The predominant mechanism for adapting ?-cell mass to states of increased insulin demand is through modulation of ?-cell replication. Therefore, there has been considerable interest in understanding the mechanisms that regulate ?-cell replication with the goal of discovering new therapeutic targets to promote ?-cell regeneration. Preliminary unpublished evidence from our laboratory suggests that the NAD+-dependent cytoplasmic deacetylase Sirtuin 2 (SIRT2) acts as a nutrient-dependent regulator of mitogenic signaling in rodent and human ?-cells. Using mouse genetic and inhibitor approaches in human islets, we found that loss of SIRT2 activity stimulates ?-cell proliferation and ?-cell mass expansion under hyperglycemic conditions. We have also obtained evidence that mimicking nutrient state changes by manipulating NAD+ availability regulates ?-cell proliferation in a manner consistent with SIRT2-dependent responses. Since intracellular NAD+ levels fluctuate with glucose availability, we hypothesize that SIRT2 couples ?-cell proliferation to glucose metabolism. Furthermore, we have found that SIRT2 inhibits ?-cell proliferation by dampening MAPK signaling and that SIRT2 inhibition in systemic hyperglycemia promotes ?-cell proliferation, while protecting ?-cells from activating pro-apoptotic signaling downstream of the endoplasmic reticulum (ER) stress response. In this proposal, we will explore how SIRT2 regulates mitogenic signaling as well as ER stress responses in ?-cells. To accomplish this, we will pursue three Aims.
In Aim 1 we will employ mouse genetic approaches and experiments in human islets to determine how glucose and nutrient state affect SIRT2-dependent regulation of ?-cell proliferation. Here, we will investigate links between NAD metabolism, activity of the master regulator of cellular energy homeostasis AMPK, SIRT2 activity, and ?-cell proliferation to gain mechanistic insight into the signaling cascades that couple nutrient availability to proliferation in ?-cells. To understand how SIRT2 modulates intracellular signaling to affect glucose-induced proliferative and apoptotic responses in ?-cells, in Aim 2, we will identify the downstream effectors of SIRT2 in the regulation of ?-cell proliferation, employing proteomic as well as in vitro and in vivo approaches. Finally, in Aim 3, we will examine the effects of SIRT2 inhibition on human ?-cell proliferation and function in vivo and explore whether combinatorial targeting of different mitogenic signaling pathways can augment pro-proliferative effects of SIRT2 inhibition. Together, experiments under this proposal will uncover how ?-cells translate nutrient cues into mitogenic signals as well as pave the way for developing pharmacological strategies to safely increase ?-cell mass in humans with diabetes.

Public Health Relevance

Nutritional cues have prominent effects on ?-cell proliferation; however, it is still unclear how ?-cells translate nutrient cues into mitogenic signals. Here, we will explore how the cytoplasmic deacetylase SIRT2 regulates mitogenic signaling and cell death responses in ?-cells. Our proposal will define signaling cascades that couple nutrient availability to cell proliferation in ?-cells, as well as pave the way for developing pharmacological strategies to safely increase ?-cell mass in humans with diabetes.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Cellular Aspects of Diabetes and Obesity Study Section (CADO)
Program Officer
Sato, Sheryl M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California, San Diego
Schools of Medicine
La Jolla
United States
Zip Code
Kopp, Janel L; Dubois, Claire L; Schaeffer, David F et al. (2018) Loss of Pten and Activation of Kras Synergistically Induce Formation of Intraductal Papillary Mucinous Neoplasia From Pancreatic Ductal Cells in Mice. Gastroenterology 154:1509-1523.e5
Wortham, Matthew; Benthuysen, Jacqueline R; Wallace, Martina et al. (2018) Integrated In Vivo Quantitative Proteomics and Nutrient Tracing Reveals Age-Related Metabolic Rewiring of Pancreatic ? Cell Function. Cell Rep 25:2904-2918.e8
Serrill, Jeffrey D; Sander, Maike; Shih, Hung Ping (2018) Pancreatic Exocrine Tissue Architecture and Integrity are Maintained by E-cadherin During Postnatal Development. Sci Rep 8:13451
Zeng, Chun; Mulas, Francesca; Sui, Yinghui et al. (2017) Pseudotemporal Ordering of Single Cells Reveals Metabolic Control of Postnatal ? Cell Proliferation. Cell Metab 25:1160-1175.e11
Fox, Raymond G; Lytle, Nikki K; Jaquish, Dawn V et al. (2016) Image-based detection and targeting of therapy resistance in pancreatic adenocarcinoma. Nature 534:407-411
Kopp, Janel L; Grompe, Markus; Sander, Maike (2016) Stem cells versus plasticity in liver and pancreas regeneration. Nat Cell Biol 18:238-45
Shih, Hung Ping; Panlasigui, Devin; Cirulli, Vincenzo et al. (2016) ECM Signaling Regulates Collective Cellular Dynamics to Control Pancreas Branching Morphogenesis. Cell Rep 14:169-79
Barrionuevo, Francisco J; Hurtado, Alicia; Kim, Gwang-Jin et al. (2016) Sox9 and Sox8 protect the adult testis from male-to-female genetic reprogramming and complete degeneration. Elife 5:
Wortham, M; Sander, M (2016) Mechanisms of ?-cell functional adaptation to changes in workload. Diabetes Obes Metab 18 Suppl 1:78-86
Shih, Hung Ping; Seymour, Philip A; Patel, Nisha A et al. (2015) A Gene Regulatory Network Cooperatively Controlled by Pdx1 and Sox9 Governs Lineage Allocation of Foregut Progenitor Cells. Cell Rep 13:326-36

Showing the most recent 10 out of 31 publications