Biomarkers such as the epidermal growth factor receptors EGFR and HER2/Neu and gastrin-releasing peptide (GRP) receptors (GRPRs) are highly expressed in various diseases such as breast and prostate cancers and play important roles in disease progression and survival. They are also major drug targets for targeted therapy. There is an urgent need to develop non-invasive and accurate methods for diagnosis and selection of patients and to monitor biomarker levels/distribution and their changes upon treatment by targeted drugs. Molecular imaging of cancer biomarkers using MRI potentially improves our understanding of the disease and drug activity during preclinical and clinical drug treatment. However, lack of desired MRI contrast agents capable of enhancing the contrast between normal tissues and tumors with high relaxivity, tumor targeting, high intratumoral distribution and no toxicity is one of the major barriers for the application of MRI to assess specific biomarkers for diagnosis and monitor drug effect. The goals of this research are to develop protein-based MRI contrast agents for future clinical application with further improved relaxivity, targeting capability and reduced toxicity to enable accurate monitoring of the expression level and distribution of two biomarkers (HER2/Neu and EGFR) in different types of cancers, and to monitor tumor response to treatment using targeted therapeutics with significantly reduced metal toxicity.
Aim 1 is to further increase relaxivity by varying structural arrangements in inner coordination shell and optimizing relaxation properties in outer sphere coordination.
Aim 2 is to develop targeted contrast agents to monitor the expression and distribution of HER2 and EGFR during cancer progression and treatment.
Aim 3 is to study the safety profiles for biostability and toxicity in preclinical models. In addition to improving our understanding of the relaxation theory, our proposed study to improve the relaxivity, targeting capability, and good tumor tissue distribution of the designed contrast agents has potential to overcome the major barriers in the clinical application of molecular imaging by MRI to assess specific disease markers. Detecting the temporal and spatial changes of a set of related disease biomarkers such as HER2 and EGFR sharing the same signaling pathway will allow for earlier disease diagnosis, monitoring disease progression and the synergistic treatment by targeted therapy, aiding in patient selection, and development of novel targeted therapies for clinical applications.

Public Health Relevance

The epidermal growth factor receptors EGFR and HER2/Neu are highly expressed as biomarkers in various cancers and play important roles in cancer progression and survival. They are also the major drug targets. Our proposed studies meet the urgent need to develop non-invasive and accurate MRI contrast agents for diagnosis and to monitor biomarker levels and their changes upon treatment by targeted drugs in cancer patients.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
5R01EB007268-07
Application #
8661577
Study Section
Clinical Molecular Imaging and Probe Development (CMIP)
Program Officer
Liu, Christina
Project Start
2006-12-01
Project End
2016-04-30
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
7
Fiscal Year
2014
Total Cost
$417,812
Indirect Cost
$96,262
Name
Georgia State University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
837322494
City
Atlanta
State
GA
Country
United States
Zip Code
30302
Reddish, Florence N; Miller, Cassandra L; Gorkhali, Rakshya et al. (2017) Monitoring ER/SR Calcium Release with the Targeted Ca2+ Sensor CatchER. J Vis Exp :
Reddish, Florence N; Miller, Cassandra L; Gorkhali, Rakshya et al. (2017) Calcium Dynamics Mediated by the Endoplasmic/Sarcoplasmic Reticulum and Related Diseases. Int J Mol Sci 18:
Zou, Juan; Jiang, Jason Y; Yang, Jenny J (2017) Molecular Basis for Modulation of Metabotropic Glutamate Receptors and Their Drug Actions by Extracellular Ca2. Int J Mol Sci 18:
Turaga, Ravi Chakra; Yin, Lu; Yang, Jenny J et al. (2016) Rational design of a protein that binds integrin ?v?3 outside the ligand binding site. Nat Commun 7:11675
Gorkhali, Rakshya; Huang, Kenneth; Kirberger, Michael et al. (2016) Defining potential roles of Pb(2+) in neurotoxicity from a calciomics approach. Metallomics 8:563-78
Zhang, Chen; Miller, Cassandra L; Gorkhali, Rakshya et al. (2016) Molecular Basis of the Extracellular Ligands Mediated Signaling by the Calcium Sensing Receptor. Front Physiol 7:441
Zhang, Chen; Zhang, Tuo; Zou, Juan et al. (2016) Structural basis for regulation of human calcium-sensing receptor by magnesium ions and an unexpected tryptophan derivative co-agonist. Sci Adv 2:e1600241
Pu, Fan; Xue, Shenghui; Yang, Jenny J (2016) ProCA1.GRPR: a new imaging agent in cancer detection. Biomark Med 10:449-52
Pu, Fan; Salarian, Mani; Xue, Shenghui et al. (2016) Prostate-specific membrane antigen targeted protein contrast agents for molecular imaging of prostate cancer by MRI. Nanoscale 8:12668-82
Zhuo, You; Solntsev, Kyril M; Reddish, Florence et al. (2015) Effect of Ca²? on the steady-state and time-resolved emission properties of the genetically encoded fluorescent sensor CatchER. J Phys Chem B 119:2103-11

Showing the most recent 10 out of 36 publications