Asbestos fibers persist in the lungs and cause chronic inflammation, pulmonary and pleural fibrosis, lung cancer, and malignant mesothelioma after latent periods of 20-40 years. Recent experimental evidence based on animal models using genetically engineered mice have provided new insight about the mechanistic links between chronic inflammation, fibrosis, and cancer. Recruitment and activation of inflammatory cells in response to biopersistent fibers is accompanied by release of reactive oxygen species leading to oxidant stress, DNA damage, and mutations. Inflammatory cells can release cytokines and growth factors that stimulate stromal remodeling and angiogenesis. It is hypothesized that reciprocal activation of tumor and stromal cells results in local release of matrix metalloproteinases that facilitate growth and invasion of diffuse malignant mesothelioma. In vitro, ex vivo, and in vivo assays using well characterized, transplantable murine mesothelial cell lines will be used to test this hypothesis.
The specific aims of the proposed research are: 1) To determine whether induction of matrix metalloproteinases in murine peritoneal macrophages is correlated with exposure to biopersistent, carcinogenic fibers; 2) To assess the contribution of macrophages to growth and invasion of neoplastic mesothelial cells in vivo; 3) To determine whether asbestos-activated macrophages stimulate invasion of preneoplastic and neoplastic mesothelial cells; 4) To determine whether overexpression of MMP9 leads to autonomous invasion of neoplastic mesothelial cells; and 5) To assess the contribution of stromal macrophages to growth and invasion of human neoplastic mesothelial cells. Newly developed technologies including laser capture microdissection and quantitative analysis of gene expression provide powerful tools for this experimental approach. Pharmacologic modulation of persistent inflammation triggered by biopersistent, carcinogenic fibers may provide a new strategy to prevent progression of malignant mesothelioma in exposed populations.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
5R01ES003721-20
Application #
7227007
Study Section
Alcohol and Toxicology Subcommittee 4 (ALTX)
Program Officer
Nadadur, Srikanth
Project Start
1985-06-15
Project End
2009-04-30
Budget Start
2007-05-01
Budget End
2009-04-30
Support Year
20
Fiscal Year
2007
Total Cost
$309,677
Indirect Cost
Name
Brown University
Department
Pathology
Type
Schools of Medicine
DUNS #
001785542
City
Providence
State
RI
Country
United States
Zip Code
02912
Sarin, Love; Sanchez, Vanesa C; Yan, Aihui et al. (2010) Selenium-carbon bifunctional nanoparticles for the treatment of malignant mesothelioma. Adv Mater 22:5207-11
Miselis, Nathan R; Lau, Bonnie W; Wu, Zhijin et al. (2010) Kinetics of host cell recruitment during dissemination of diffuse malignant peritoneal mesothelioma. Cancer Microenviron 4:39-50
Lau, Bonnie W; Kane, Agnes B (2010) SDF1/CXCL12 is involved in recruitment of stem-like progenitor cells to orthotopic murine malignant mesothelioma spheroids. Anticancer Res 30:2153-60
Altomare, Deborah A; Menges, Craig W; Pei, Jianming et al. (2009) Activated TNF-alpha/NF-kappaB signaling via down-regulation of Fas-associated factor 1 in asbestos-induced mesotheliomas from Arf knockout mice. Proc Natl Acad Sci U S A 106:3420-5
Sanchez, Vanesa C; Pietruska, Jodie R; Miselis, Nathan R et al. (2009) Biopersistence and potential adverse health impacts of fibrous nanomaterials: what have we learned from asbestos? Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:511-29
Miselis, Nathan R; Wu, Zhijin J; Van Rooijen, Nico et al. (2008) Targeting tumor-associated macrophages in an orthotopic murine model of diffuse malignant mesothelioma. Mol Cancer Ther 7:788-99
Pietruska, Jodie R; Kane, Agnes B (2007) SV40 oncoproteins enhance asbestos-induced DNA double-strand breaks and abrogate senescence in murine mesothelial cells. Cancer Res 67:3637-45
Kane, Agnes B (2006) Animal models of malignant mesothelioma. Inhal Toxicol 18:1001-4
Altomare, Deborah A; You, Huihong; Xiao, Guang-Hui et al. (2005) Human and mouse mesotheliomas exhibit elevated AKT/PKB activity, which can be targeted pharmacologically to inhibit tumor cell growth. Oncogene 24:6080-9
Altomare, Deborah A; Vaslet, Charles A; Skele, Kristine L et al. (2005) A mouse model recapitulating molecular features of human mesothelioma. Cancer Res 65:8090-5

Showing the most recent 10 out of 21 publications