Circadian clocks generate daily biological rhythms that provide adaptive advantage to organisms by allowing them to anticipate and prepare for regular daily changes in their environment. Circadian disruption has been associated with numerous immune, inflammatory, and metabolic disorders, including diabetic retinopathy. The retina contains multiple circadian clocks located in a variety of retinal cell types, including amacrine, ganglion, photoreceptor, and retinal pigment epithelial (RPE) cells, that modulate visual processing and generate a circadian rhythm of protection from photo-oxidative stress. Circadian clocks are transcriptional-translational feedback loops of conserved clock genes and proteins that generate ~24h rhythms. CLOCK and NPAS2 have overlapping roles in the feedback loops and both regulate circadian gene transcription. The relative contributions of CLOCK and NPAS2 to retinal circadian oscillators have not been explored. In addition, the mechanisms whereby diverse retinal clocks are entrained to the light-dark cycle and are synchronized to regulate retinal function are still unclear. Dopamine (DA) is a circadian neuromodulator that optimizes retinal physiology for bright light, high-resolution vision during the daytime. We hypothesize that DA synchronizes circadian clocks expressing NPAS2 and CLOCK in distinct retinal cell types to modulate visual processing and rhythmic protection from photo-oxidative stress. Using established genetic models and novel mouse models in which DA and/or specific clock genes are depleted selectively from the retina by conditional gene disruption, we will examine circadian rhythms of visual function, sensitivity to photo-oxidative stress, and gene expression to provide a more clear understanding of the organization retinal circadian clock networks. Research proposed in this application is designed to test the following three predictions of our hypotheses: (1) DA modulates circadian rhythms of contrast sensitivity via dopamine D4 receptor (D4R)-mediated regulation of cAMP signaling and circadian oscillators that drive rhythms with both CLOCK/BMAL1 and NPAS2/BMAL1 complexes. (2) Circadian rhythms of photopic ERG amplitudes are modulated by DA effects on photoreceptors via D4Rs, cAMP, and oscillators that utilize CLOCK but not NPAS2. (3) DA protects photoreceptors against photo-oxidative stress via D4Rs on photoreceptors and via dopamine D5 receptors (D5Rs) and dopamine D2-like receptors on RPE cells by modulating a CLOCK-dependent circadian rhythm of susceptibility to light damage. These innovative studies will elucidate mechanisms of retinal circadian physiology that control high-resolution vision and sensitivity to photo-oxidative stress. They will provide novel insights into ways to improve visual function at night (e.g., shift workers, pilots) and to prevent or treat retinal degenerative diseases.

Public Health Relevance

Modern society exposes us to light at night, which disrupts our bodies'circadian rhythms and may predispose us to blinding retinal disorders. This research investigates how retinal neuromodulators regulate natural circadian rhythms to provide high-resolution vision and protection from environmental or endogenous stressors that may contribute blinding diseases such as age-related macular degeneration (AMD). This study will increase our understanding of the risks to our visual health of circadian disruption and may lead to development of novel therapeutic approaches for AMD and other retinal degenerative diseases.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
2R01EY004864-30A1
Application #
8578402
Study Section
Special Emphasis Panel (BVS)
Program Officer
Greenwell, Thomas
Project Start
1983-07-01
Project End
2014-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
30
Fiscal Year
2013
Total Cost
$390,000
Indirect Cost
$140,000
Name
Emory University
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Kang, Seong Su; Ahn, Eun Hee; Zhang, Zhentao et al. (2018) ?-Synuclein stimulation of monoamine oxidase-B and legumain protease mediates the pathology of Parkinson's disease. EMBO J 37:
Sankaran, Mathangi; Keeley, Patrick W; He, Li et al. (2018) Dopaminergic amacrine cell number, plexus density, and dopamine content in the mouse retina: Strain differences and effects of Bax gene disruption. Exp Eye Res 177:208-212
Kim, Moon K; Aung, Moe H; Mees, Lukas et al. (2018) Dopamine Deficiency Mediates Early Rod-Driven Inner Retinal Dysfunction in Diabetic Mice. Invest Ophthalmol Vis Sci 59:572-581
Chakraborty, Ranjay; Ostrin, Lisa A; Nickla, Debora L et al. (2018) Circadian rhythms, refractive development, and myopia. Ophthalmic Physiol Opt 38:217-245
Mui, Amanda M; Yang, Victoria; Aung, Moe H et al. (2018) Daily visual stimulation in the critical period enhances multiple aspects of vision through BDNF-mediated pathways in the mouse retina. PLoS One 13:e0192435
Vancura, Patrick; Csicsely, Erika; Leiser, Annalisa et al. (2018) Rhythmic Regulation of Photoreceptor and RPE Genes Important for Vision and Genetically Associated With Severe Retinal Diseases. Invest Ophthalmol Vis Sci 59:3789-3799
Zhang, Zhentao; Kang, Seong Su; Liu, Xia et al. (2017) Asparagine endopeptidase cleaves ?-synuclein and mediates pathologic activities in Parkinson's disease. Nat Struct Mol Biol 24:632-642
Kang, Seong Su; Zhang, Zhentao; Liu, Xia et al. (2017) ?-Synuclein binds and sequesters PIKE-L into Lewy bodies, triggering dopaminergic cell death via AMPK hyperactivation. Proc Natl Acad Sci U S A 114:1183-1188
Zhou, Xiangtian; Pardue, Machelle T; Iuvone, P Michael et al. (2017) Dopamine signaling and myopia development: What are the key challenges. Prog Retin Eye Res 61:60-71
Haque, Rashidul; Iuvone, P Michael; He, Li et al. (2017) The MicroRNA-21 signaling pathway is involved in prorenin receptor (PRR) -induced VEGF expression in ARPE-19 cells under a hyperglycemic condition. Mol Vis 23:251-262

Showing the most recent 10 out of 141 publications