Two powerful inhibitory networks in the visual thalamus converge on relay cells and influence every spike that travels downstream. Local interneurons provide feedforward inhibition to relay cells and each other. The thalamic reticular nucleus receives input from relay cells and inhibits them in return. Work in fixed tissue or brain slices has provided insight into the pharmacology, cellular physiology and anatomy of these circuits. It is patently necessary apply these ex vivo results to function in vivo. To bridge this gap, we record from inhibitory cells directly and monitor the inhibition they generate in relay cels during vision. Our strategy updates classical comparative anatomical and physiological approaches by combining whole-cell recording and intracellular labeling in vivo with theory and computational techniques.
Aim 1) Exploring the integration of On and Off pathways in the LGN. Relay cells have receptive fields made of concentric On and Off subregions with a push-pull layout of excitation and inhibition;e.g. where bright stimuli excite, dark inhibit. Retina supplie the push (excitation). We propose that the pull (inhibition to stimuli of the reverse sign) comes from local interneurons with receptive fields like those of their postsynaptic partners, but with te opposite preference for stimulus polarity. It is difficult, however, to map connectivity between and On and OFF cells because these cannot be anatomically distinguished in most mammals. Thus, we will test our hypothesis by using the ferret, where On and Off cells occupy different sublaminae in the LGN.
Aim 2) Model systems to explore inhibitory mechanisms in higher animals. Genetic approaches make rodent a popular subject for studying vision. However, the cortical organization of carnivore vs. rodent is vastly different, from the level of the functional architecture to properties of single cells. We ask where these differences emerge by quantitatively comparing the synaptic structure of receptive fields in carnivore vs. rodent LGN. Preliminary studies suggest that basic principles of processing in the LGN are conserved. Thus, we will probe push-pull using mutants lacking an On channel. Further, interneurons and relay cells in cat process their inputs in quantitatively different ways that optimize information transmission;we will dissect the bases for these differences in rodent.
Aim 3) Inhibitory contributions to processing stimulus contrast. We hypothesize that push-pull and same-sign inhibition (inhibition to the preferred stimulus polarity) expand the range of sensitivity to stimuus contrast and improve feature detection at high contrasts. We will explore extra-retinal mechanisms of contrast gain by comparing retinal input to thalamic output patterns in relay cells and by recording from interneurons. Push- pull vs. same-sign inhibition will be separated empirically by silencing the On channel, and computationally with conductance based models. In addition, we will ask how inhibition contributes to feature selectivity by assessing changes in the relative weights of push and pull at different contrasts.

Public Health Relevance

Synapses made by inhibitory neurons dominate the intrinsic circuitry of the visual thalamus and influence all signals traveling from retina to cortex. Here we update classical comparative physiological and anatomical approaches with whole-cell recording in vivo, genetic manipulation and varied computational methods to ask how inhibitory circuits in thalamus enhance selectivity for stimulus features and improve the efficiency of the neural code. Our premise is that without understanding how basic circuits operate in the healthy animal, one cannot appreciate how these circuits are altered by diseases, such as those that strike the eye (amblyopia, strabismus) or cognition (schizophrenia, autism).

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY009593-21
Application #
8706876
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Araj, Houmam H
Project Start
1993-07-01
Project End
2017-07-31
Budget Start
2014-09-01
Budget End
2015-07-31
Support Year
21
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Southern California
Department
Type
Schools of Arts and Sciences
DUNS #
City
Los Angeles
State
CA
Country
United States
Zip Code
90089
Suresh, Vandana; Çiftçio?lu, Ula? M; Wang, Xin et al. (2016) Synaptic Contributions to Receptive Field Structure and Response Properties in the Rodent Lateral Geniculate Nucleus of the Thalamus. J Neurosci 36:10949-10963
Hirsch, Judith A; Wang, Xin; Sommer, Friedrich T et al. (2015) How inhibitory circuits in the thalamus serve vision. Annu Rev Neurosci 38:309-29
Martinez, Luis M; Molano-Mazón, Manuel; Wang, Xin et al. (2014) Statistical wiring of thalamic receptive fields optimizes spatial sampling of the retinal image. Neuron 81:943-956
Wang, Xin; Sommer, Friedrich T; Hirsch, Judith A (2011) Inhibitory circuits for visual processing in thalamus. Curr Opin Neurobiol 21:726-33
Wang, Xin; Vaingankar, Vishal; Soto Sanchez, Cristina et al. (2011) Thalamic interneurons and relay cells use complementary synaptic mechanisms for visual processing. Nat Neurosci 14:224-31
Koepsell, Kilian; Wang, Xin; Hirsch, Judith A et al. (2010) Exploring the function of neural oscillations in early sensory systems. Front Neurosci 4:53
Wang, Xin; Hirsch, Judith A; Sommer, Friedrich T (2010) Recoding of sensory information across the retinothalamic synapse. J Neurosci 30:13567-77
Koepsell, Kilian; Wang, Xin; Vaingankar, Vishal et al. (2009) Retinal oscillations carry visual information to cortex. Front Syst Neurosci 3:4
Stepanyants, Armen; Martinez, Luis M; Ferecsko, Alex S et al. (2009) The fractions of short- and long-range connections in the visual cortex. Proc Natl Acad Sci U S A 106:3555-60
Wang, Xin; Wei, Yichun; Vaingankar, Vishal et al. (2007) Feedforward excitation and inhibition evoke dual modes of firing in the cat's visual thalamus during naturalistic viewing. Neuron 55:465-78

Showing the most recent 10 out of 11 publications