The long-term goal of our research is to understand how the actin cytoskeleton and endomembrane cooperate in the development and maintenance of healthy photoreceptors. Currently, our grasp of how these dynamic cell functions are integrated in living cells is limited and this in turn limits thinking towards their potential therapeutic manipulation. To remedy this gap, we propose to incorporate live cell imaging and advanced optical methods enabled by fluorescent protein tags and reporters to investigate basic mechanisms of the photoreceptor actin cytoskeleton and endomembrane. A confluence of our recent work on rhodopsin transport and visual arrestin 2 translocation leads us to formulate three specific aims. Building on our observations that fly reticulon, Rtnl1, marks photoreceptor smooth ER, including the subrhabdomeric cisterna essential for photoreceptor maintenance and that Ire1, an initiator of cytoprotective ER signaling, is active and required for normal photoreceptor differentiation, Specific Aim 1 will characterize photoreceptor ER growth and differentiation. It will further test our hypothesis that the ER-associated cytoplasmic isoform of fly Myosin III, NINACp132, contributes a Ca2+-regulated repository of visual arrestin 2 in unstimulated photoreceptors. To test our model of MyoV-mediated rhodopsin transport, Specific Aim 2 will adapt our novel method of light-triggered synchronous release of rhodopsin into the biosynthetic pathway to live cell imaging and use this to assay rhodopsin transport in normal and mutant photoreceptors. FRET will be used to test protein-protein interactions predicted within the MyoV transport complex. We will further examine MyoV phosphorylation control of cargo selection and the role of Ca2+ in MyoV motility. To characterize turnover and regulation of the actin cytoskeleton in living photoreceptors, Specific Aim 3 will track regionally-activated Dendra2 tagged actin within the rhabdomere and terminal web using time lapse imaging. FRET reporters of G-Actin/F-Actin equilibrium and small GTPase activity will be queried during photoreceptor development. Drosophila photoreceptors are an intensively studied model sensory cell utilizing the universal PLC signaling pathway employed by many cell types, including melanopsin-containing ganglion cells of the mammalian retina. If the aims of this project are achieved, key properties of core cell functions will be established in this model.

Public Health Relevance

Dysfunction of core cytoskeleton/endomembrane interactions causes intractable, life- threatening disease including Griscelli syndrome and Microvillus Inclusion Disease. The Drosophila eye is a proven model system for dissecting complex cell pathways and in view of the extraordinary conservation of these phylogenetically ancient molecular networks we anticipate that results obtained here will be broadly informative and useful to consideration of rational strategies to support healthy cells.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY010306-16
Application #
8536295
Study Section
Special Emphasis Panel (ZRG1-BDPE-J (09))
Program Officer
Neuhold, Lisa
Project Start
1994-04-01
Project End
2014-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
16
Fiscal Year
2013
Total Cost
$292,600
Indirect Cost
$102,600
Name
Purdue University
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
072051394
City
West Lafayette
State
IN
Country
United States
Zip Code
47907
Chen, Xinping; Hall, Hana; Simpson, Jeffrey P et al. (2017) Cytochrome b5 protects photoreceptors from light stress-induced lipid peroxidation and retinal degeneration. NPJ Aging Mech Dis 3:18
Chen, Xinping; Leon-Salas, Walter D; Zigon, Taylor et al. (2017) A Programmable Optical Stimulator for the Drosophila Eye. HardwareX 2:13-33
Xu, Zuyuan; Chikka, Madhusudana Rao; Xia, Hongai et al. (2016) Ire1 supports normal ER differentiation in developing Drosophila photoreceptors. J Cell Sci 129:921-9
Sengupta, Sukanya; Barber, Thomas R; Xia, Hongai et al. (2013) Depletion of PtdIns(4,5)P? underlies retinal degeneration in Drosophila trp mutants. J Cell Sci 126:1247-59
Xia, Hongai; Ready, Donald F (2011) Ectoplasm, ghost in the R cell machine? Dev Neurobiol 71:1246-57
Satoh, Akiko K; Xia, Hongai; Yan, Limin et al. (2010) Arrestin translocation is stoichiometric to rhodopsin isomerization and accelerated by phototransduction in Drosophila photoreceptors. Neuron 67:997-1008
Liu, Che-Hsiung; Satoh, Akiko K; Postma, Marten et al. (2008) Ca2+-dependent metarhodopsin inactivation mediated by calmodulin and NINAC myosin III. Neuron 59:778-89
Satoh, Akiko K; Li, Bingbing X; Xia, Hongai et al. (2008) Calcium-activated Myosin V closes the Drosophila pupil. Curr Biol 18:951-5
Li, Bingbing X; Satoh, Akiko K; Ready, Donald F (2007) Myosin V, Rab11, and dRip11 direct apical secretion and cellular morphogenesis in developing Drosophila photoreceptors. J Cell Biol 177:659-69
Satoh, Akiko K; O'Tousa, Joseph E; Ozaki, Koichi et al. (2005) Rab11 mediates post-Golgi trafficking of rhodopsin to the photosensitive apical membrane of Drosophila photoreceptors. Development 132:1487-97

Showing the most recent 10 out of 13 publications