Laminins are biologically-active molecules which function as cell adhesion molecules, regulate various aspects of development, and serve to stabilize complex anatomical structures. They are large extracellular matrix molecules that are composed of three subunit chains, designated alpha, beta and gamma. Five alpha, three beta and three gamma chains have been identified. Several disorders of the nervous system are linked to laminin genes: some congenital muscular dystrophies involve the alpha2 chain (merosin); the beta2 chain is reduced in Walker-Warburg syndrome, and a complex group of CNS developmental disorders (muscle-brain-eye disease; retinitis pigmentosa with deafness (RP21 with deafness); Walker-Warburg syndrome) map to the site of the gamma3 gene. Laminins are widely expressed in the CNS; we have shown that in the human, rat, bovine and mouse retina, four laminin chains (alpha3, alpha4, beta2 and gamma3) are found in the interphotoreceptor matrix and in the matrix of the outer plexiform layer (OPL). These chains are likely to form two heterotrimers, laminin-13 and laminin-14. The retinal laminin chains appear to play important roles in the morphogenesis of photoreceptors; first, these chains are expressed prior to the onset of rod genesis and persist into adulthood; second, ablation of the gene encoding one of the chains, beta2, results in the production of dysmorphic photoreceptors with aberrant function. Specifically, photoreceptor outer segments are reduced in length; the photoreceptor terminal in the OPL are disrupted: finally, in ERGs, the amplitude of the b-wave is drastically diminished, suggesting that transmission between photoreceptors and bipolar cells is disrupted by loss of laminin beta2 chain function. We hypothesize that laminins-13 and -14 are critical mediators of synapse formation and stabilization between photoreceptors and second order cells in the OPL. Furthermore, we hypothesize that laminins-13 and -14 form unique substrates with which photoreceptor axons interact and to which they adhere in order to elaborate synapses, and, finally, that the molecular structure of the synapse is dependent on the interactions between these laminins and their receptors. We propose to test several aspects of this hypothesis. We will ask several specific questions: (1) what the spatial and temporal expression of laminin-binding molecules is in the OPL; (2) whether these molecules mediate the binding of cells to OPL laminins; and (3) what anatomical and physiological alterations in the photoreceptor synapse result from laminin gene disruptions.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
3R01EY012676-03S1
Application #
6460098
Study Section
Visual Sciences C Study Section (VISC)
Program Officer
Hunter, Chyren
Project Start
2000-08-01
Project End
2003-07-31
Budget Start
2001-08-01
Budget End
2002-07-31
Support Year
3
Fiscal Year
2001
Total Cost
$319,065
Indirect Cost
Name
Tufts University
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
604483045
City
Boston
State
MA
Country
United States
Zip Code
02111
Serjanov, Dmitri; Bachay, Galina; Hunter, Dale D et al. (2018) Laminin ?2 Chain Regulates Retinal Progenitor Cell Mitotic Spindle Orientation via Dystroglycan. J Neurosci 38:5996-6010
Biswas, Saptarshi; Watters, Jared; Bachay, Galina et al. (2018) Laminin-dystroglycan signaling regulates retinal arteriogenesis. FASEB J :fj201800232R
Omar, Mitchell H; Kerrisk Campbell, Meghan; Xiao, Xiao et al. (2017) CNS Neurons Deposit Laminin ?5 to Stabilize Synapses. Cell Rep 21:1281-1292
Biswas, Saptarshi; Bachay, Galina; Chu, Julianne et al. (2017) Laminin-Dependent Interaction between Astrocytes and Microglia: A Role in Retinal Angiogenesis. Am J Pathol 187:2112-2127
Kociok, Norbert; Crespo-Garcia, Sergio; Liang, Yong et al. (2016) Lack of netrin-4 modulates pathologic neovascularization in the eye. Sci Rep 6:18828
Varshney, Shweta; Hunter, Dale D; Brunken, William J (2015) Extracellular Matrix Components Regulate Cellular Polarity and Tissue Structure in the Developing and Mature Retina. J Ophthalmic Vis Res 10:329-39
Ramos, Raddy L; Siu, Nga Yan; Brunken, William J et al. (2014) Cellular and axonal constituents of neocortical molecular layer heterotopia. Dev Neurosci 36:477-89
Saghizadeh, Mehrnoosh; Dib, Christian M; Brunken, William J et al. (2014) Normalization of wound healing and stem cell marker patterns in organ-cultured human diabetic corneas by gene therapy of limbal cells. Exp Eye Res 129:66-73
Saghizadeh, Mehrnoosh; Epifantseva, Irina; Hemmati, David M et al. (2013) Enhanced wound healing, kinase and stem cell marker expression in diabetic organ-cultured human corneas upon MMP-10 and cathepsin F gene silencing. Invest Ophthalmol Vis Sci 54:8172-80
Radner, Stephanie; Banos, Charles; Bachay, Galina et al. (2013) ?2 and ?3 laminins are critical cortical basement membrane components: ablation of Lamb2 and Lamc3 genes disrupts cortical lamination and produces dysplasia. Dev Neurobiol 73:209-29

Showing the most recent 10 out of 19 publications