The goals of the research are to characterize the structural, electronic, and vibrational, properties of tetrapyrrolic macrocycles in various environments including solutions, heme proteins, heme protein maquettes (small synthetic proteins), and supramolecuIar assemblies (synthetic nanostructures). The principal investigative tool is resonance Raman (RR) spectroscopy, although Uv-Vis, infrared (IR), and electron paramagnetic resonance (EPR) spectroscopies; electrochemical techniques; and vibrational analysis methods also play important roles. The long-term objective is to relate the physical properties of the rings to the their functional characteristics (ligand binding and transport, electron transfer, energy transfer, catalysis) in both synthetic and natural proteins.
The specific aims are as follows: (l) Low-frequency vibrational spectra will be obtained and assigned for various five- and six- coordinate porphyrins and hydroporphyrins. Optimum force fields will be developed for the out-of-plane deformations of the rings. These force fields will explicitly include histidine as an axial ligand. (2) RR spectra will be obtained for a series of distal-site myoglobin mutants whose X-ray crystal structures and ligand-binding kinetics have been well characterized. The RR data will be assessed in the context of a complete vibrational model for the low-frequency modes of the heme(axial-ligand unit in order to develop reliable frequency/structure/ligand-binding affinity correlations. The RR data for the mutants will also be used for further refinement of the force field for the out-of-plane modes of the heme/axial-ligand unit. This force field should be more reliable than one developed from model complexes alone and should facilitate more accurate modeling of the heme motions in molecular dynamics simulations. (3) RR spectra will be obtained for a series of small (62 amino acids) synthetic mono- and diheme binding peptides. These data will be used to assess how the structure of the hemes affects their redox chemistry. This information will serve as a benchmark for future synthetic protein design aimed at precise control of the redox properties of the hemes. (4) Optical, RR, and EPR spectra will be obtained for a variety of novel, covalently linked porphyrinic assemblies. These data will be used to determine how the geometrical arrangement of the rings in the assembly affects the electronic communication between the macrocycles.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Metallobiochemistry Study Section (BMT)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Riverside
Schools of Earth Sciences/Natur
United States
Zip Code
Prasuhn Jr, Duane E; Kuzelka, Jane; Strable, Erica et al. (2008) Polyvalent display of heme on hepatitis B virus capsid protein through coordination to hexahistidine tags. Chem Biol 15:513-9
Thamyongkit, Patchanita; Speckbacher, Markus; Diers, James R et al. (2004) Swallowtail porphyrins: synthesis, characterization and incorporation into porphyrin dyads. J Org Chem 69:3700-10
Holten, Dewey; Bocian, David F; Lindsey, Jonathan S (2002) Probing electronic communication in covalently linked multiporphyrin arrays. A guide to the rational design of molecular photonic devices. Acc Chem Res 35:57-69
Youngblood, W Justin; Gryko, Daniel T; Lammi, Robin K et al. (2002) Glaser-mediated synthesis and photophysical characterization of diphenylbutadiyne-linked porphyrin dyads. J Org Chem 67:2111-7
Tang, Qun; Carrington, Paul E; Horng, Yih-Chern et al. (2002) X-ray absorption and resonance Raman studies of methyl-coenzyme M reductase indicating that ligand exchange and macrocycle reduction accompany reductive activation. J Am Chem Soc 124:13242-56
Ambroise, Arounaguiry; Kirmaier, Christine; Wagner, Richard W et al. (2002) Weakly coupled molecular photonic wires: synthesis and excited-state energy-transfer dynamics. J Org Chem 67:3811-26
Ferrari, D; Diers, J R; Bocian, D F et al. (2001) Raman signatures of ligand binding and allosteric conformation change in hexameric insulin. Biopolymers 62:249-60
Tang, Q; Kalsbeck, W A; Olson, J S et al. (1998) Disruption of the heme iron-proximal histidine bond requires unfolding of deoxymyoglobin. Biochemistry 37:7047-56
Shifman, J M; Moser, C C; Kalsbeck, W A et al. (1998) Functionalized de novo designed proteins: mechanism of proton coupling to oxidation/reduction in heme protein maquettes. Biochemistry 37:16815-27
Kalsbeck, W A; Robertson, D E; Pandey, R K et al. (1996) Structural and electronic properties of the heme cofactors in a multi-heme synthetic cytochrome. Biochemistry 35:3429-38

Showing the most recent 10 out of 19 publications