Biological nitrogen fixation is mediated by the nitrogenase enzyme system that catalyses the ATP dependent reduction of atmospheric dinitrogen to ammonia; this reaction is the only known biological mechanism for converting nitrogen from the abundant atmospheric reservoir to a metabolically usable form. Indeed until the advent of the Haber-Bosch process, virtually all nitrogen present in the biomolecules of humans and all other organisms was fixed through the action of nitrogenase in microorganisms. Nitrogenase consists of two component metalloproteins, the MoFe-protein with the FeMo-cofactor that provides the active site for substrate reduction, and the Fe-protein that couples ATP hydrolysis to electron transfer. The mechanistic questions related to how nitrogenase overcomes the kinetic stability of the NN triple bond to fix dinitrogen under ambient conditions have intrigued chemists for the past century and serve as the focus for the present proposal. Using approaches based on biochemistry, X-ray crystallography and electron microscopy, experiments are designed to probe the nitrogenase mechanism in molecular detail. These studies will address how substrates bind to the active site FeMo-cofactor, the flow of electrons through the system, and the nucleotide dependent interactions of the nitrogenase proteins, which are essential for developing a molecular mechanism for nitrogenase function. Beyond the specific details of the reduction of dinitrogen, nitrogenase is a prototypic example of an enzyme with multiple and varied iron-sulfur clusters that participate in electron transfer and substrate reduction, as well as providing an excellent model for energy transduction of ATP hydrolysis. Consequently, these studies will further have broad implications beyond nitrogenase for diverse biochemical systems.

Public Health Relevance

Acquisition of metabolically usable forms of nitrogen is essential for the growth and survival of all organisms. Biological nitrogen fixation mediated by the enzyme nitrogenase is the only known biological mechanism for utilizing the abundant reservoir of atmospheric dinitrogen for metabolic purposes; we will study in molecular detail how this enzyme converts dinitrogen to ammonia under mild conditions that have yet to be efficiently duplicated in the laboratory.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM045162-26
Application #
9523141
Study Section
Macromolecular Structure and Function A Study Section (MSFA)
Program Officer
Anderson, Vernon
Project Start
1991-01-01
Project End
2019-06-30
Budget Start
2018-07-01
Budget End
2019-06-30
Support Year
26
Fiscal Year
2018
Total Cost
Indirect Cost
Name
California Institute of Technology
Department
Type
Schools of Arts and Sciences
DUNS #
009584210
City
Pasadena
State
CA
Country
United States
Zip Code
91125
Arias, Renee J; Kaiser, Jens T; Rees, Douglas C (2018) The ""speed limit"" for macromolecular crystal growth. Protein Sci 27:1837-1841
Segal, Helen M; Spatzal, Thomas; Hill, Michael G et al. (2017) Electrochemical and structural characterization of Azotobacter vinelandii flavodoxin II. Protein Sci 26:1984-1993
Morrison, Christine N; Spatzal, Thomas; Rees, Douglas C (2017) Reversible Protonated Resting State of the Nitrogenase Active Site. J Am Chem Soc 139:10856-10862
Spatzal, Thomas; Schlesier, Julia; Burger, Eva-Maria et al. (2016) Nitrogenase FeMoco investigated by spatially resolved anomalous dispersion refinement. Nat Commun 7:10902
Spatzal, Thomas; Perez, Kathryn A; Howard, James B et al. (2015) Catalysis-dependent selenium incorporation and migration in the nitrogenase active site iron-molybdenum cofactor. Elife 4:e11620
Mattle, Daniel; Zhang, Limei; Sitsel, Oleg et al. (2015) A sulfur-based transport pathway in Cu+-ATPases. EMBO Rep 16:728-40
Zhang, Li Mei; Morrison, Christine N; Kaiser, Jens T et al. (2015) Nitrogenase MoFe protein from Clostridium pasteurianum at 1.08?Å resolution: comparison with the Azotobacter vinelandii MoFe protein. Acta Crystallogr D Biol Crystallogr 71:274-82
Nguyen, Phong T; Li, Qi Wen; Kadaba, Neena S et al. (2015) The contribution of methionine to the stability of the Escherichia coli MetNIQ ABC transporter-substrate binding protein complex. Biol Chem 396:1127-34
Morrison, Christine N; Hoy, Julie A; Zhang, Limei et al. (2015) Substrate pathways in the nitrogenase MoFe protein by experimental identification of small molecule binding sites. Biochemistry 54:2052-60
Tezcan, F Akif; Kaiser, Jens T; Howard, James B et al. (2015) Structural evidence for asymmetrical nucleotide interactions in nitrogenase. J Am Chem Soc 137:146-9

Showing the most recent 10 out of 38 publications