Since nitrogen-containing heterocycles are ubiquitous features of biologically active molecules, new methods for their construction greatly assist scientists working in the fields of medicinal chemistry, drug design, biochemistry, and pharmacology. Lactams are particularly useful because the nitrogen atom is not basic and the functional group is relatively inert to many reaction conditions, yet can be appropriately transformed into amines under appropriate conditions. Accordingly, the purpose of this work is to develop a valuable new reaction that permits ready access to a wide variety of lactams: the acid-catalyzed reaction of alkyl azides and ketones. Although a related process, the Schmidt reaction of hydrazoic acid and ketones, is a well-established tool in heterocyclic chemistry, attempts to extend its scope to include alkyl azides have historically met with failure. However, work in this laboratory over the last year has shown that alkyl azides can in fact react with ketones to afford the corresponding ring-expanded lactams in high yield. Importantly, this permits the conceptualization of an intramolecular process between ketones and azides. The first section details the exploration of the effects of the ketone and azide structure on the intramolecular version of the reaction, considering such variables as tether length, functional group compatibility, stereochemistry, and migratory aptitudes. In addition, aldehydes, thioketones, acetals and ketals, and enol ethers can in principle give intermediates that could react in analogous ways and expand the range of the keto/azide reaction. Finally, although the primary focus of this project will be the development of the synthetic method, some mechanistic work is warranted and will be pursued. The second section of the proposal will outline efforts toward applying these new reactions to the total syntheses of biologically relevant compounds. The targets will be chosen in large part based on opportunities they provide for testing particular aspects of the chemistry central to this proposal. In so doing, a balance is sought between maximizing the types of nitrogen-containing ring systems obtainable by this approach, target complexity, and the importance of analogs of the prototypical targets to biomedical research. The specific compounds suggested for synthesis are: alkaloids A209B and analogs, cavelina pictine alkaloids, lasubine I and/or II, sparteine, 3-demethoxyerythratidinone, lycorane, elwesine, aspidospermine, and cephalotaxine.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
1R01GM049093-01
Application #
3308434
Study Section
Medicinal Chemistry Study Section (MCHA)
Project Start
1993-05-01
Project End
1997-04-30
Budget Start
1993-05-01
Budget End
1994-04-30
Support Year
1
Fiscal Year
1993
Total Cost
Indirect Cost
Name
University of Kansas Lawrence
Department
Type
Schools of Pharmacy
DUNS #
072933393
City
Lawrence
State
KS
Country
United States
Zip Code
66045
Fehl, Charlie; Hirt, Erin E; Li, Sze-Wan et al. (2015) Temperature dependence of turnover in a Sc(OTf)3-catalyzed intramolecular Schmidt reaction. Tetrahedron Lett 56:3137-3140
Szostak, Roman; Aubé, Jeffrey; Szostak, Michal (2015) Determination of Structures and Energetics of Small- and Medium-Sized One-Carbon-Bridged Twisted Amides using ab Initio Molecular Orbital Methods: Implications for Amidic Resonance along the C-N Rotational Pathway. J Org Chem 80:7905-27
Szostak, Roman; Aubé, Jeffrey; Szostak, Michal (2015) An efficient computational model to predict protonation at the amide nitrogen and reactivity along the C-N rotational pathway. Chem Commun (Camb) 51:6395-8
Singh, Gurpreet; Meyer, Angelica; Aubé, Jeffrey (2014) Stereodivergent synthesis of enantioenriched 4-hydroxy-2-cyclopentenones. J Org Chem 79:452-8
Szostak, Michal; Aubé, Jeffrey (2013) Chemistry of bridged lactams and related heterocycles. Chem Rev 113:5701-65
Motiwala, Hashim F; Fehl, Charlie; Li, Sze-Wan et al. (2013) Overcoming product inhibition in catalysis of the intramolecular Schmidt reaction. J Am Chem Soc 135:9000-9
Motiwala, Hashim F; Gulgeze, Belgin; Aube, Jeffrey (2012) Copper-catalyzed oxaziridine-mediated oxidation of C-H bonds. J Org Chem 77:7005-22
Liu, Ruzhang; Gutierrez, Osvaldo; Tantillo, Dean J et al. (2012) Stereocontrol in a combined allylic azide rearrangement and intramolecular Schmidt reaction. J Am Chem Soc 134:6528-31
Gutierrez, Osvaldo; Aube, Jeffrey; Tantillo, Dean J (2012) Mechanism of the acid-promoted intramolecular schmidt reaction: theoretical assessment of the importance of lone pair-cation, cation-ýý, and steric effects in controlling regioselectivity. J Org Chem 77:640-7
Huh, Chan Woo; Schroeder, Chad; Singh, Gurpreet et al. (2011) Stereoselectivity in nucleophilic additions to 3-azidoalkanals. J Org Chem 76:3160-5

Showing the most recent 10 out of 37 publications