Cohesin organizes eukaryotic genomes into structures that segregate faithfully between dividing cells. The complex keeps newly replicated sister chromatids together and folds individual chromatids into compact chromosomal structures. Cohesin accomplishes these tasks by holding distant DNA sites in close proximity. Defects in cohesin or cohesin regulators have been linked to cancer and are the cause of developmental diseases known collectively as cohesinopathies. Thus, understanding how cohesin functions will reveal much about chromosome structure as it relates to human health. Cohesin complexes bind numerous chromosomal sites by encircling the DNA of each site in a topological embrace. Many cohesin binding sites lie in and around genes. When the genes are expressed, cohesin must move out of the way of advancing RNA polymerases. How this occurs is not clear. The central goal of this proposal is to understand how cohesin moves on chromosomal arms to adopt positions that achieve structural roles yet permit proper gene expression. The Gartenberg lab recently showed that cohesin translocates on DNA by sliding, and that the complex remains cohesive while in motion. Using yeast as a model system, this proposal aims to determine how the dynamic distribution of cohesin on chromosomal DNA is determined by binding, sliding and function of the complex.
Aim 1 uses novel, molecular biology assays to define the dimensions of the DNA channel through cohesin, as well as determine whether the complex embraces one or two chromatids within the same channel. The experiments will determine how the dimensions of the complex limit which obstacles the complex can slide past.
Aim 2 uses molecular biology assays to determine how transcription and other ATP-dependent processes regulate cohesin movement, and define the biological consequences when movement is blocked. The experiments will determine the molecular basis and physiological benefit of cohesin accumulating at specific cohesin enrichment sites.
Aim 3 uses genome-scale strategies to distinguish between chromosomal sites where cohesin holds sister chromatids together and where it does not. The experiments will yield the first comprehensive maps of cohesin based on the functionality of the complex.

Public Health Relevance

PI: Gartenberg, Marc R. PROJECT NARRATIVE Human diseases caused by defects in the protein complex known as cohesin (cohesinopathies) display a host of abnormalities in chromosome structure and gene expression. To understand what goes wrong in these diseases, we need to first fully account for how cohesin normally operates on chromosomes. Using yeast as a model system, we will investigate how and why cohesin slides on chromosomes to adopt characteristic positions between transcribing genes.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM051402-22
Application #
9922290
Study Section
Molecular Genetics B Study Section (MGB)
Program Officer
Gaillard, Shawn R
Project Start
1994-09-12
Project End
2023-02-28
Budget Start
2020-03-01
Budget End
2021-02-28
Support Year
22
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Rbhs-Robert Wood Johnson Medical School
Department
Biochemistry
Type
Schools of Medicine
DUNS #
078795875
City
Piscataway
State
NJ
Country
United States
Zip Code
08854
Gartenberg, Marc R; Smith, Jeffrey S (2016) The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae. Genetics 203:1563-99
Chou, Chia-Ching; Patel, Michael T; Gartenberg, Marc R (2015) A series of conditional shuttle vectors for targeted genomic integration in budding yeast. FEMS Yeast Res 15:
Chen, Miao; Gartenberg, Marc R (2014) Coordination of tRNA transcription with export at nuclear pore complexes in budding yeast. Genes Dev 28:959-70
Fox, Catherine A; Gartenberg, Marc R (2012) Palmitoylation in the nucleus: a little fat around the edges. Nucleus 3:251-5
Gartenberg, Marc R (2012) Generation of DNA circles in yeast by inducible site-specific recombination. Methods Mol Biol 833:103-13
Ruben, Giulia J; Kirkland, Jacob G; MacDonough, Tracy et al. (2011) Nucleoporin mediated nuclear positioning and silencing of HMR. PLoS One 6:e21923
Wu, Ching-Shyi; Chen, Yu-Fan; Gartenberg, Marc R (2011) Targeted sister chromatid cohesion by Sir2. PLoS Genet 7:e1002000
Park, Sookhee; Patterson, Erin E; Cobb, Jenel et al. (2011) Palmitoylation controls the dynamics of budding-yeast heterochromatin via the telomere-binding protein Rif1. Proc Natl Acad Sci U S A 108:14572-7
Gartenberg, Marc R (2009) Life on the edge: telomeres and persistent DNA breaks converge at the nuclear periphery. Genes Dev 23:1027-31
Gartenberg, Marc (2009) Heterochromatin and the cohesion of sister chromatids. Chromosome Res 17:229-38

Showing the most recent 10 out of 11 publications