Our laboratory exploits a very simple animal model, the nematode C. elegans, to investigate the molecular mechanism of volatile anesthetic action. We have established that genes and physiologic pathways that alter anesthetic sensitivity in the nematode also alter sensitivity in mammals. The importance of the fact that the same molecular pathways affect sensitivity across different species is hard to overstate. We have identified a group of genes that alter mitochondrial function and control the sensitivity of C. elegans to volatile anesthetics (VAs). A point mutation in gas-1, which encodes the 49 kDa subunit of complex I of the mitochondrial electron transport chain, causes the animal to be very hypersensitive to all VAs. In addition, we have found that a subset of patients, children with metabolic defects most clearly related to complex I function, are profoundly hypersensitive to sevoflurane. This finding provides a clinical correlate to the basic study of very simple animal model. The sum of our work clearly implicates mitochondrial function as a novel mechanism that contributes to the control of anesthetic response. In this proposal we will extend our studies in the nematode to test our hypothesis that alterations in complex I function change anesthetic sensitivity via direct effects on metabolism, and via indirect effects on specific downstream proteins.
The specific aims to test these hypotheses are: 1. Using an RNAi screen, determine which subunits of complex I alter anesthetic sensitivity in C. elegans. Our data indicate that the function of this complex is key to mediating behavior in VAs in nematodes, and may have a parallel role in patients with mitochondrial disease. 2. Using gene array analysis, we will determine genes and gene sets whose expression changes as a downstream effect of complex I dysfunction. We will restrict our analysis to expression profiles that alter anesthetic sensitivity by a subtraction strategy that focuses on changes specific to neurons. The microarray analysis will be validated by using RNAi to specifically reduce levels of expression of genes discovered in this aim, and test the resultant effects on behavior in VAs. This superb animal model allows putative molecular targets of VAs to be confirmed or refuted by assessing whole animal behavior. A tractable animal model is crucial to unraveling the mechanism of action of this very important class of anesthetic agents. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM058881-08A1
Application #
7145383
Study Section
Surgery, Anesthesiology and Trauma Study Section (SAT)
Program Officer
Cole, Alison E
Project Start
1999-01-01
Project End
2010-08-31
Budget Start
2006-09-22
Budget End
2007-08-31
Support Year
8
Fiscal Year
2006
Total Cost
$400,325
Indirect Cost
Name
Case Western Reserve University
Department
Anesthesiology
Type
Schools of Medicine
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Dancy, Beverley M; Sedensky, Margaret M; Morgan, Philip G (2015) Mitochondrial bioenergetics and disease in Caenorhabditis elegans. Front Biosci (Landmark Ed) 20:198-228
Morgan, P G; Higdon, R; Kolker, N et al. (2015) Comparison of proteomic and metabolomic profiles of mutants of the mitochondrial respiratory chain in Caenorhabditis elegans. Mitochondrion 20:95-102
Suthammarak, Wichit; Somerlot, Benjamin H; Opheim, Elyce et al. (2013) Novel interactions between mitochondrial superoxide dismutases and the electron transport chain. Aging Cell 12:1132-40
Quintana, Albert; Morgan, Philip G; Kruse, Shane E et al. (2012) Altered anesthetic sensitivity of mice lacking Ndufs4, a subunit of mitochondrial complex I. PLoS One 7:e42904
Yang, Yu-Ying; Vasta, Valeria; Hahn, Sihoun et al. (2011) The role of DMQ(9) in the long-lived mutant clk-1. Mech Ageing Dev 132:331-9
Chen, Xiulian; Thorburn, David R; Wong, Lee-Jun et al. (2011) Quality improvement of mitochondrial respiratory chain complex enzyme assays using Caenorhabditis elegans. Genet Med 13:794-9
Singaram, Vinod K; Somerlot, Benjamin H; Falk, Scott A et al. (2011) Optical reversal of halothane-induced immobility in C. elegans. Curr Biol 21:2070-6
Pfeiffer, Matthew; Kayzer, Ernst-Bernhard; Yang, Xianmei et al. (2011) Caenorhabditis elegans UCP4 protein controls complex II-mediated oxidative phosphorylation through succinate transport. J Biol Chem 286:37712-20
Kayser, Ernst-Bernhard; Suthammarak, Wichit; Morgan, Phil G et al. (2011) Isoflurane selectively inhibits distal mitochondrial complex I in Caenorhabditis elegans. Anesth Analg 112:1321-9
Vasta, V; Sedensky, M; Morgan, P et al. (2011) Altered redox status of coenzyme Q9 reflects mitochondrial electron transport chain deficiencies in Caenorhabditis elegans. Mitochondrion 11:136-8

Showing the most recent 10 out of 24 publications