For each chromosome to properly segregate during mitosis, its kinetochores must bipolarly attach spindle microtubules. The failure of chromosomes to biorient is a major cause of cellular aneuploidy, a driving force in cancer and birth defects. Bipolar attachment is achieved because tension is produced between sister kinetochores, which both stabilizes microtubule attachments and turns off spindle checkpoint signals. A key to understanding how cells become aneuploid is to understand how chromosomes sense tension between sister kinetochores and use this to regulate microtubule attachment and spindle checkpoint signals. Proteins that localize to the inner centromere are central to these processes and these proteins form a network to regulate the Aurora B kinase which is a member of the chromosome passenger complex. We have purified the CPC to homogeneity and developed a system to study its activation in vitro. These experiments are uncovering both positive and negative feedback loops as well as the key mutants to dissect the role of these pathways in vivo. To characterize mutants we are employing the animal caps of Xenopus embryos which allow us to easily knockdown and replace proteins and dissect phenotypes in normal diploid tissue. The combination of in vitro biochemistry, Xenopus extracts and now dissection of phenotypes in animal caps provides a unique opportunity to move seamlessly between biochemical and cell biological approaches in a vertebrate system. We hypothesize that one role of the CPC is to generate gradients of soluble phosphoactivity that provide spatial information to pattern the 3D space of the cell for mitotic events. We will also test this important hypothesis as well as determine the role of Aurora B in generating a central band of RhoA that determines the location of the cytokinetic furrow. Finally we will perform purification of inner centromere chromatin to systematically identify proteins that localize to this chromosome territory as well as the DNA sequences that they are assembled upon.

Public Health Relevance

The missegregation of chromosomes during mitosis is a major source of genetic mutations in cancer. During mitosis every chromosome assembles an inner centromere between its kinetochores, which is a key signaling center to ensure accurate chromosome segregation. The experiments in this proposal systematically dissect the inner centromere region with an emphasis on the regulation of the Chromosome Passenger Complex, which includes the Aurora B kinase. The experiments employ the power of Xenopus extracts to dissect function and reconstitution of complex reagents from purified proteins. We also expand the Xenopus system by employing phenotypic characterization of cell cycle phenotypes in Xenopus embryos. This combination of biochemical, cell biological and in vivo techniques provides unique experimental power to dissect this important problem.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Nuclear and Cytoplasmic Structure/Function and Dynamics Study Section (NCSD)
Program Officer
Hamlet, Michelle R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Virginia
Schools of Medicine
United States
Zip Code
Barnhart-Dailey, Meghan C; Trivedi, Prasad; Stukenberg, P Todd et al. (2017) HJURP interaction with the condensin II complex during G1 promotes CENP-A deposition. Mol Biol Cell 28:54-64
Trivedi, Prasad; Stukenberg, P Todd (2016) A Centromere-Signaling Network Underlies the Coordination among Mitotic Events. Trends Biochem Sci 41:160-174
Stukenberg, P Todd; Burke, Daniel J (2015) Connecting the microtubule attachment status of each kinetochore to cell cycle arrest through the spindle assembly checkpoint. Chromosoma 124:463-80
Eagleson, Gerald; Pfister, Katherine; Knowlton, Anne L et al. (2015) Kif2a depletion generates chromosome segregation and pole coalescence defects in animal caps and inhibits gastrulation of the Xenopus embryo. Mol Biol Cell 26:924-37
Manukyan, Arkadi; Ludwig, Kirsten; Sanchez-Manchinelly, Sergio et al. (2015) A complex of p190RhoGAP-A and anillin modulates RhoA-GTP and the cytokinetic furrow in human cells. J Cell Sci 128:50-60
Banerjee, Budhaditya; Kestner, Cortney A; Stukenberg, P Todd (2014) EB1 enables spindle microtubules to regulate centromeric recruitment of Aurora B. J Cell Biol 204:947-63
Matson, Daniel R; Stukenberg, P Todd (2014) CENP-I and Aurora B act as a molecular switch that ties RZZ/Mad1 recruitment to kinetochore attachment status. J Cell Biol 205:541-54
Zy?kiewicz, Eliza; Stukenberg, P Todd (2014) Xenopus egg extracts as a simplified model system for structure-function studies of dynein regulators. Methods Mol Biol 1136:117-33
Earnshaw, W C; Allshire, R C; Black, B E et al. (2013) Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant. Chromosome Res 21:101-6
Niedzialkowska, Ewa; Wang, Fangwei; Porebski, Przemyslaw J et al. (2012) Molecular basis for phosphospecific recognition of histone H3 tails by Survivin paralogues at inner centromeres. Mol Biol Cell 23:1457-66

Showing the most recent 10 out of 41 publications