Metal-Catalyzed C-H Borylation: Mechanism, Scope, and Applications Abstract C-H borylation is a process where C-H bonds in an organic molecule react with B-H or B-B bonds forming a B-C bond. The byproducts of this process are dihydrogen from B-H reagents or a borane from B-B reagents. In most instances, this process is metal-catalyzed, and the most widely utilized systems employ iridium. The regioselectivities for C-H borylations often complement those of more commonly employed C-H functionalization methods like electrophilic aromatic substitution (EAS) or directed ortho-metalation (DoM). Although steric interactions can have a strong influence on regioselectivity, there is evidence that electronic effects may play an important, though underappreciated, role in this chemistry. Herein we propose to advance our understanding of C-H borylations and to orthogonally develop the methodology such that it can offer solutions to synthetic problems faced by the biomedical community. Specifically, we propose to (1) gain insight into the mechanistic nature of these reactions;(2) Develop new strategies for contra electronic C-H functionalizations;and (3) Invent new catalysts for atroposelective C-H functionalization. We will pursue these aims through a collaborative multi- investigator venture that bring the power of inorganic chemistry, organic synthesis, and computational methods to bear on the problem.

Public Health Relevance

Metal-Catalyzed C-H Borylation: Mechanism, Scope, and Applications Project Narrative: New pharmaceuticals call for new chemical building blocks. Similarly, lower cost drugs will require more efficient and environmentally friendly routes to these key synthetic intermediates. Thus we looked to invent chemistry that will allow for the preparation of otherwise inaccessible molecule that may enable drug discovery, development, and production.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM063188-08
Application #
8481556
Study Section
Synthetic and Biological Chemistry A Study Section (SBCA)
Program Officer
Lees, Robert G
Project Start
2001-06-01
Project End
2015-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
8
Fiscal Year
2013
Total Cost
$276,660
Indirect Cost
$75,432
Name
Michigan State University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
193247145
City
East Lansing
State
MI
Country
United States
Zip Code
48824
Smith 3rd, Milton R; Bisht, Ranjana; Haldar, Chabush et al. (2018) Achieving High Ortho Selectivity in Aniline C-H Borylations by Modifying Boron Substituents. ACS Catal 8:6216-6223
Chattopadhyay, Buddhadeb; Dannatt, Jonathan E; Andujar-De Sanctis, Ivonne L et al. (2017) Ir-Catalyzed ortho-Borylation of Phenols Directed by Substrate-Ligand Electrostatic Interactions: A Combined Experimental/in Silico Strategy for Optimizing Weak Interactions. J Am Chem Soc 139:7864-7871
Shen, Fangyi; Tyagarajan, Sriram; Perera, Damith et al. (2016) Bismuth Acetate as a Catalyst for the Sequential Protodeboronation of Di- and Triborylated Indoles. Org Lett 18:1554-7
Smith, Kyle T; Berritt, Simon; González-Moreiras, Mariano et al. (2016) Catalytic borylation of methane. Science 351:1424-7
Ghaffari, Behnaz; Vanchura 2nd, Britt A; Chotana, Ghayoor A et al. (2015) Reversible Borylene Formation from Ring Opening of Pinacolborane and Other Intermediates Generated from Five-Coordinate Tris-Boryl Complexes: Implications for Catalytic C-H Borylation. Organometallics 34:4732-4740
Kallepalli, Venkata A; Gore, Kristin A; Shi, Feng et al. (2015) Harnessing C-H Borylation/Deborylation for Selective Deuteration, Synthesis of Boronate Esters, and Late Stage Functionalization. J Org Chem 80:8341-53
Ghaffari, Behnaz; Preshlock, Sean M; Plattner, Donald L et al. (2014) Silyl phosphorus and nitrogen donor chelates for homogeneous ortho borylation catalysis. J Am Chem Soc 136:14345-8
Jayasundara, Chathurika R K; Unold, Jason M; Oppenheimer, Jossian et al. (2014) A catalytic borylation/dehalogenation route to o-fluoro arylboronates. Org Lett 16:6072-5
Preshlock, Sean M; Plattner, Donald L; Maligres, Peter E et al. (2013) A traceless directing group for C-H borylation. Angew Chem Int Ed Engl 52:12915-9
Roosen, Philipp C; Kallepalli, Venkata A; Chattopadhyay, Buddhadeb et al. (2012) Outer-sphere direction in iridium C-H borylation. J Am Chem Soc 134:11350-3

Showing the most recent 10 out of 18 publications