The mesodermal germ layer gives rise to a variety of functionally important cell types, including striated and non-striated muscles as well as non-muscle cells. Understanding the regulatory mechanisms underlying mesoderm diversification has widespread implications in basic biology, stem cell biology and clinical research. The C. elegans postembryonic mesodermal lineage, the M lineage, provides unique advantages for studying mesoderm diversification at single cell resolution. The M lineage is derived from a single pluripotent precursor cell, the M mesoblast, which during hermaphrodite postembryonic development proliferates and produces six cell types: striated bodywall muscles (BWM), non-muscle coelomocytes (CC), and four classes of non-striated sex muscles. Both M and its descendants divide in a reproducible pattern, which is under both developmental and cell cycle control. The M lineage is thus ideally suited to investigating how different mesodermal fates are diversified from a single progenitor cell, how positional information is integrated with lineage-intrinsic information, and how diverse programs of asymmetric patterning, cell division timing and orientation, and cell fate specification are integrated. Our long-term goal is to understand the regulatory logic of M lineage diversification in mechanistic detail. During the previous and current funding periods, we have successfully conducted in-depth molecular genetic studies on signaling and transcriptional regulatory mechanisms involved in M lineage development. Our results have allowed us to begin to assemble the regulatory networks involved in the proper specification of BWM, CC and the precursor of the non-striated muscles, the sex myoblast (SM). Our identification and characterization of several transcription factors involved in these fate specification processes have also provided key insights into how these factors may function in similar processes in vertebrates and how their malfunction may be linked to certain human diseases. More importantly, these studies have provided us with reagents and exciting opportunities to address additional fundamental questions in developmental biology. In this proposal, we will exploit the M lineage to dissect mechanisms involved in the specification and proliferation of multi-potent progenitors (Aim 1) and mechanisms underlying the specification of different types of non- striated/smooth muscles (Aim 2). Because many of the factors that we have identified are conserved in vertebrates and our studies of them in the M lineage have contributed to the mechanistic understanding of their functions in general, we propose to molecularly identify and characterize two """"""""new"""""""" factors critical for M lineage development (Aim 3). Finally, we are at the point to exploit the M lineage to dissect the connection between cell type- and stage-specific chromatin features and transcription factor action during cell fate specification and cell differentiation in vivo, an important area in developmental biology that we know very little about. We propose to address this question using the newly developed INTACT (isolation of nuclei tagged in specific cell types) method (Aim 4).

Public Health Relevance

The mesodermal germ layer gives rise to a variety of functionally important cell types, including striated and non-striated muscles as well as non-muscle cells. Understanding the regulatory mechanisms underlying mesoderm diversification has widespread implications in basic biology, stem cell biology and clinical research.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM066953-10A1
Application #
8438707
Study Section
Development - 1 Study Section (DEV1)
Program Officer
Hoodbhoy, Tanya
Project Start
2002-09-02
Project End
2017-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
10
Fiscal Year
2013
Total Cost
$322,543
Indirect Cost
$112,543
Name
Cornell University
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Shen, Qinfang; Toulabi, Leila B; Shi, Herong et al. (2018) The forkhead transcription factor UNC-130/FOXD integrates both BMP and Notch signaling to regulate dorsoventral patterning of the C. elegans postembryonic mesoderm. Dev Biol 433:75-83
Shen, Qinfang; Shi, Herong; Tian, Chenxi et al. (2017) The C. elegans Spalt-like protein SEM-4 functions through the SoxC transcription factor SEM-2 to promote a proliferative blast cell fate in the postembryonic mesoderm. Dev Biol 429:335-342
Wang, Lin; Liu, Zhiyu; Shi, Herong et al. (2017) Two Paralogous Tetraspanins TSP-12 and TSP-14 Function with the ADAM10 Metalloprotease SUP-17 to Promote BMP Signaling in Caenorhabditis elegans. PLoS Genet 13:e1006568
Liu, Zhiyu; Shi, Herong; Szymczak, Lindsey C et al. (2015) Promotion of bone morphogenetic protein signaling by tetraspanins and glycosphingolipids. PLoS Genet 11:e1005221
Hale, Jared J; Amin, Nirav M; George, Carolyn et al. (2014) A role of the LIN-12/Notch signaling pathway in diversifying the non-striated egg-laying muscles in C. elegans. Dev Biol 389:137-48
Tian, Chenxi; Liu, Jun (2013) Repulsive guidance molecules (RGMs) and neogenin in bone morphogenetic protein (BMP) signaling. Mol Reprod Dev 80:700-17
Tian, Chenxi; Shi, Herong; Xiong, Shan et al. (2013) The neogenin/DCC homolog UNC-40 promotes BMP signaling via the RGM protein DRAG-1 in C. elegans. Development 140:4070-80
Krause, Michael; Liu, Jun (2012) Somatic muscle specification during embryonic and post-embryonic development in the nematode C. elegans. Wiley Interdiscip Rev Dev Biol 1:203-14
Barkan, Rachel; Zahand, Adam J; Sharabi, Kfir et al. (2012) Ce-emerin and LEM-2: essential roles in Caenorhabditis elegans development, muscle function, and mitosis. Mol Biol Cell 23:543-52
Tian, Chenxi; Shi, Herong; Colledge, Clark et al. (2011) The C. elegans SoxC protein SEM-2 opposes differentiation factors to promote a proliferative blast cell fate in the postembryonic mesoderm. Development 138:1033-43

Showing the most recent 10 out of 24 publications