Zinc is an essential nutrient that profoundly affects human health, as zinc deficiency and zinc excess both result in a broad spectrum of pathologies. Zinc plays many roles in biological systems, since zinc is essential for the function of many proteins and zinc modulates signal transduction pathways. A detailed understanding of zinc metabolism and homeostasis is critical for the development of new approaches for manipulating zinc to promote human health. There are major gaps in the current understanding of zinc metabolism in animals, since fundamental mechanisms used to take up, distribute, sense and excrete zinc are not well understood. Our long-term goal is to understand how a network of zinc transporters and binding proteins act in a coordinated fashion to regulate zinc metabolism in animals. This goal will be addressed by analyzing zinc importers, zinc exporters and new genes involved in zinc metabolism using mammalian cells and the genetically tractable model organism C. elegans. Understanding how a network of proteins controls zinc metabolism in an animal is an important objective of medical research, since the information may lead to new therapeutic approaches for diseases caused by abnormal zinc metabolism. Our preliminary results have established the powerful C. elegans model system for studies of zinc metabolism by the development of culture conditions that permit manipulation of dietary zinc, the creation of assays that measure zinc metabolism, and the identification of mutations in new genes that affect zinc metabolism. These results support three innovative hypotheses. (1) CDF-2 plays a critical role in zinc storage and detoxification by transporting zinc into the lumen of lysosome-related organelles. (2) Lysosome-related organelles adopt a bilobed morphology in response to high zinc conditions and provide a source of zinc that is mobilized during deficiency. (3) Histidine ammonia lyase plays an important role in zinc metabolism, and high levels of histidine promote zinc detoxification. To test these hypotheses, we propose two specific aims.
Aim 1 : Define the role of CDF-2 and lysosome-related organelles in zinc storage. Elucidate how a network proteins including CDF, ZIP and ferroportin function in a coordinated manner to regulate zinc storage and mobilization.
Aim 2 : Determine the function of histidine ammonia lyase and histidine in zinc metabolism in mammalian cells. Identify and characterize new genes that mediate zinc metabolism in C. elegans and mammals. These experiments build on our accomplishments in the previous grant period that established the C. elegans model system for studies of zinc metabolism. This proposal will extend these discoveries to vertebrate systems and exploit the powerful experimental advantages of C. elegans to elucidate how a network of genes regulates zinc storage and mobilization in a multicellular animal. Several prevalent human diseases such as Alzheimer's disease, stroke and cancer have been associated with abnormalities of zinc metabolism, and the results of these studies may suggest new therapeutic strategies for addressing disorders of zinc toxicity.

Public Health Relevance

Zinc is an essential nutrient that is critical for human health, since zinc deficiency and excess both cause a wide range of health problems. This research will determine how animals protect themselves against excess zinc, and how zinc that is stored in times of excess can be used later in times of deficiency. These studies will suggest new strategies for treating diseases caused by zinc excess or deficiency.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Integrative Nutrition and Metabolic Processes Study Section (INMP)
Program Officer
Anderson, Vernon
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Other Basic Sciences
Schools of Medicine
Saint Louis
United States
Zip Code
Dietrich, Nicholas; Schneider, Daniel L; Kornfeld, Kerry (2017) A pathway for low zinc homeostasis that is conserved in animals and acts in parallel to the pathway for high zinc homeostasis. Nucleic Acids Res 45:11658-11672
Warnhoff, Kurt; Roh, Hyun C; Kocsisova, Zuzana et al. (2017) The Nuclear Receptor HIZR-1 Uses Zinc as a Ligand to Mediate Homeostasis in Response to High Zinc. PLoS Biol 15:e2000094
Leight, Elizabeth R; Murphy, John T; Fantz, Douglas A et al. (2015) Conversion of the LIN-1 ETS protein of Caenorhabditis elegans from a SUMOylated transcriptional repressor to a phosphorylated transcriptional activator. Genetics 199:761-75
Warnhoff, Kurt; Kornfeld, Kerry (2015) New links between protein N-terminal acetylation, dauer diapause, and the insulin/IGF-1 signaling pathway in Caenorhabditis elegans. Worm 4:e1023498
Roh, Hyun Cheol; Dimitrov, Ivan; Deshmukh, Krupa et al. (2015) A modular system of DNA enhancer elements mediates tissue-specific activation of transcription by high dietary zinc in C. elegans. Nucleic Acids Res 43:803-16
Warnhoff, Kurt; Murphy, John T; Kumar, Sandeep et al. (2014) The DAF-16 FOXO transcription factor regulates natc-1 to modulate stress resistance in Caenorhabditis elegans, linking insulin/IGF-1 signaling to protein N-terminal acetylation. PLoS Genet 10:e1004703
Roh, Hyun Cheol; Collier, Sara; Deshmukh, Krupa et al. (2013) ttm-1 encodes CDF transporters that excrete zinc from intestinal cells of C. elegans and act in a parallel negative feedback circuit that promotes homeostasis. PLoS Genet 9:e1003522
Roh, Hyun Cheol; Collier, Sara; Guthrie, James et al. (2012) Lysosome-related organelles in intestinal cells are a zinc storage site in C. elegans. Cell Metab 15:88-99
Murphy, John T; Bruinsma, Janelle J; Schneider, Daniel L et al. (2011) Histidine protects against zinc and nickel toxicity in Caenorhabditis elegans. PLoS Genet 7:e1002013
Johnson, Kenneth G; Kornfeld, Kerry (2010) The CRAL/TRIO and GOLD domain protein TAP-1 regulates RAF-1 activation. Dev Biol 341:464-71

Showing the most recent 10 out of 13 publications