Bacteria are surrounded by a cell wall containing layers of peptidoglycan, the integrity of which is essential for bacterial survival. In the final stage of peptidoglycan biosynthesis, enzymes called transglycosylases catalyze the polymerization of a disaccharide pentapeptide building block to form the carbohydrate chains of peptidoglycan. Transglycosylases are believed to have tremendous potential as antibiotic targets, but there is no detailed structural or mechanistic information on any of them. The natural product moenomycin is proposed to kill bacterial cells by binding to bacterial transglycosylases but almost nothing is known about how it interacts with these enzymes. Because the chemistry and biology of bacterial transglycosylases is so poorly understood, scientists have not been able to explore the potential of these enzymes as anti-infective targets or to develop good approaches to discover new transglycosylase inhibitors. The research proposed here is directed towards obtaining detailed mechanistic and structural information on bacterial transglycosylases, on understanding the mode of inhibition of moenomycin, and on developing strategies to screen transglycosylases for small molecule inhibitors. This work may lead to the development of inhibitors of bacterial transglycosylases that can be used to combat antibiotic resistant microorganisms.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Synthetic and Biological Chemistry A Study Section (SBCA)
Program Officer
Jones, Warren
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Harvard University
Schools of Medicine
United States
Zip Code
Sjodt, Megan; Brock, Kelly; Dobihal, Genevieve et al. (2018) Structure of the peptidoglycan polymerase RodA resolved by evolutionary coupling analysis. Nature 556:118-121
Zheng, Sanduo; Sham, Lok-To; Rubino, Frederick A et al. (2018) Structure and mutagenic analysis of the lipid II flippase MurJ from Escherichia coli. Proc Natl Acad Sci U S A 115:6709-6714
Rubino, Frederick A; Kumar, Sujeet; Ruiz, Natividad et al. (2018) Membrane Potential Is Required for MurJ Function. J Am Chem Soc 140:4481-4484
Schaefer, Kaitlin; Owens, Tristan W; Kahne, Daniel et al. (2018) Substrate Preferences Establish the Order of Cell Wall Assembly in Staphylococcus aureus. J Am Chem Soc 140:2442-2445
Hussain, Saman; Wivagg, Carl N; Szwedziak, Piotr et al. (2018) MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis. Elife 7:
Santiago, Marina; Lee, Wonsik; Fayad, Antoine Abou et al. (2018) Genome-wide mutant profiling predicts the mechanism of a Lipid II binding antibiotic. Nat Chem Biol 14:601-608
Schaefer, Kaitlin; Matano, Leigh M; Qiao, Yuan et al. (2017) In vitro reconstitution demonstrates the cell wall ligase activity of LCP proteins. Nat Chem Biol 13:396-401
Matano, Leigh M; Morris, Heidi G; Hesser, Anthony R et al. (2017) Antibiotic That Inhibits the ATPase Activity of an ATP-Binding Cassette Transporter by Binding to a Remote Extracellular Site. J Am Chem Soc 139:10597-10600
Welsh, Michael A; Taguchi, Atsushi; Schaefer, Kaitlin et al. (2017) Identification of a Functionally Unique Family of Penicillin-Binding Proteins. J Am Chem Soc 139:17727-17730
Srisuknimit, Veerasak; Qiao, Yuan; Schaefer, Kaitlin et al. (2017) Peptidoglycan Cross-Linking Preferences of Staphylococcus aureus Penicillin-Binding Proteins Have Implications for Treating MRSA Infections. J Am Chem Soc 139:9791-9794

Showing the most recent 10 out of 55 publications