Reactions with atmospheric oxygen are required for many life-sustaining processes. The class-III diiron proteins use oxygen to selectively oxidize lipids and to put OH groups into molecules in critical biosynthetic pathways. Class-III diiron enzymes play essential roles in many aspects of lipid synthesis and metabolism and are linked to human health problems including obesity, diabetes, attention-deficit disorder, and neurodegeneration. They are also crucial in the natural bioremediation of oil. There is a dearth of mechanistic information about this family of membrane enzymes, primarily because their membrane-associated nature makes them very difficult to purify and study. Alkane monooxygenase (AlkB) is a member of the class-III integral membrane diiron proteins along with fatty acid desaturases and fatty acid hydroxylases. The amino acid sequence of AlkB indicates that it is not structurally similar to other enzymes with similar functions. Determining its three-dimensional structure is a feat that has eluded scientists for decades. In an important step forward in preliminary work, PI Austin and co-Investigator Feng have solved the first structure of AlkB with a bound substrate and shown that it serves as an excellent model system to understand the catalytic mechanism of class-III diiron proteins. This breakthrough, together with the establishment of a novel assay for rapid functional characterization and the development of a suite of AlkB active AlkB homologs, paves the way to answering key questions about these important metalloenzymes. The PIs will integrate structural, functional, biochemical, computational, and spectroscopic studies to determine the three-dimensional structure of the diiron active site, identify determinants of substrate specificity, learn how AlkB is activated by its partner protein, and probe how the presence of a covalently bound electron-transfer partner, found only in a class of gram positive bacteria, changes the reactivity of this enzyme family. In so doing, they will expand the basic knowledge of strategies to break and make key chemical bonds, which may lead to the development of new synthetic routes to make life-saving and life-extending molecules. Their work will also provide critical insights to efforts to target this family of enzymes for therapeutic purposes.

Public Health Relevance

AlkB represents a large family of membrane proteins, the class-III diiron proteins, that help synthesize critical fatty acids, lipids, and alcohols from bacteria to humans. This protein family includes therapeutic targets for treating obesity, diabetes, attention deficit disorders, cancer, and fatty acid hydroxylase- associated neurodegeneration. Understanding how these proteins work will contribute fundamental knowledge of their catalytic reactions, generate insights for developing future therapeutics, and inform new strategies for producing life- saving molecules.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
1R01GM130989-01A1
Application #
10122184
Study Section
Macromolecular Structure and Function A Study Section (MSFA)
Program Officer
Aslan, Kadir
Project Start
2020-09-15
Project End
2024-07-31
Budget Start
2020-09-15
Budget End
2021-07-31
Support Year
1
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Barnard College
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
068119601
City
New York
State
NY
Country
United States
Zip Code
10027