application) The overall goal of this proposal is to determine the role of chemokine receptors in vascular disease. Chemokines (chemotatic cytokines) specifically attract leukocytes by activating G-protein-coupled receptors. The investigators have focused their efforts on two of these receptors, CCR2 and CCR5, which were cloned in this laboratory and which are the major chemokine receptors on monocytes. During the first funding period, the investigators examined the structure/activity relationships of these two receptors with regard to ligand binding and signaling. The work proposed in the current application will extend these in vitro studies to in vivo models, taking advantage of our recent creation of a CCR2 knockout mouse. The first goal of the proposal is to determine the role of CCR2 in two forms of vascular disease: atherosclerosis and the accelerated arteriosclerosis of allogeneic cardiac transplants. The investigators will cross the CCR2-/- mice with apoE-/- mice and perform detailed atherosclerosis studies. The investigators will also perform heterotopic transplants of allogeneic hearts into the CCR2-/- mice and determine whether CCR2 plays a role in chronic myocardial rejection and transplant arteriosclerosis. The second goal is creating CCR2/CCR5 double-knockout mice. The investigators will selectively delete these receptors and simultaneously """"""""knock in"""""""" lacZ under the control of the CCR2 promoter and green fluorescent protein (GFP) under the control of the CCR5 promoter. This approach will generate chemokine receptor knockout animals, as well as provide a sensitive means for detecting the endogenous in vivo expression of CCR2 and CCR5. Differential regulation of chemokine receptors clustered on chromosome 3 (3p21.3-24) may provide specificity in inflammation and immunity. The third goal is to determine the tissue-specific expression and transcriptional regulation if selected CC receptors. The investigators will use the hemizygous CCR2/CCR5 double-knockout mice (CCR2+/LacZ, CCR5=/GfP), as well as transgenic mice created with large fragments of human genomic DNA, to follow the expression of these two receptors in models of human disease. the experiments proposed in this grant will utilize novel and complementary approaches to provide the first detailed information on the role of chemokines and chemokine receptors in vascular disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL052773-06
Application #
6030684
Study Section
Experimental Cardiovascular Sciences Study Section (ECS)
Project Start
1994-07-15
Project End
2003-06-30
Budget Start
1999-07-01
Budget End
2000-06-30
Support Year
6
Fiscal Year
1999
Total Cost
Indirect Cost
Name
J. David Gladstone Institutes
Department
Type
DUNS #
047120084
City
San Francisco
State
CA
Country
United States
Zip Code
94158
Gonzalez, Julien; Mouttalib, Sofia; Delage, Christine et al. (2013) Dual effect of chemokine CCL7/MCP-3 in the development of renal tubulointerstitial fibrosis. Biochem Biophys Res Commun 438:257-63
Zouggari, Yasmine; Ait-Oufella, Hafid; Bonnin, Philippe et al. (2013) B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med 19:1273-80
Charo, Israel F; Taub, Rebecca (2011) Anti-inflammatory therapeutics for the treatment of atherosclerosis. Nat Rev Drug Discov 10:365-76
Saederup, Noah; Cardona, Astrid E; Croft, Kelsey et al. (2010) Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS One 5:e13693
Yan, Wei; Si, Yue; Slaymaker, Sarah et al. (2010) Zmynd15 encodes a histone deacetylase-dependent transcriptional repressor essential for spermiogenesis and male fertility. J Biol Chem 285:31418-26
Daugherty, Alan; Rateri, Debra L; Charo, Israel F et al. (2010) Angiotensin II infusion promotes ascending aortic aneurysms: attenuation by CCR2 deficiency in apoE-/- mice. Clin Sci (Lond) 118:681-9
Si, Yue; Tsou, Chia-Lin; Croft, Kelsey et al. (2010) CCR2 mediates hematopoietic stem and progenitor cell trafficking to sites of inflammation in mice. J Clin Invest 120:1192-203
Saederup, Noah; Chan, Liana; Lira, Sergio A et al. (2008) Fractalkine deficiency markedly reduces macrophage accumulation and atherosclerotic lesion formation in CCR2-/- mice: evidence for independent chemokine functions in atherogenesis. Circulation 117:1642-8
Jia, Ting; Serbina, Natalya V; Brandl, Katharina et al. (2008) Additive roles for MCP-1 and MCP-3 in CCR2-mediated recruitment of inflammatory monocytes during Listeria monocytogenes infection. J Immunol 180:6846-53
Tsou, Chia-Lin; Peters, Wendy; Si, Yue et al. (2007) Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest 117:902-9

Showing the most recent 10 out of 47 publications