T lymphocytes are a major component of the inflammatory response and aberrant regulation of T cell activation and differentiation may be central to the pathogenesis of asthma. The CD28 co-stimulatory receptor is a critical regulator of T cell activation and differentiation, and thus may be an important target for therapy of immune mediated diseases. Manipulation of this receptor has been shown to alter the course of several animal models of disease, inducing models of antigen-induced airway inflammation. Accordingly, the primary goal of this proposal is to increase our understanding of the cellular and molecular basis by which CD28 modulates the T cell response to antigen. CD28 regulates multiple aspects of T cell functions, including proliferation, adhesion, T helper cell phenotype development and cell survival. The PI demonstrates that CD28 is essential for the development of antigen-induced inflammation in a murine model of airway disease. Sensitized CD28-deficient mice fail to develop airway inflammation or eosinophilia in response to antigen challenge. Examination of T helper cell phenotype in CD28 -/- mice demonstrates a defect in Th2 cytokine gene expression. The mechanism by which CD28 regulates these diverse aspects of T cell function is poorly understood, but likely involves multiple signaling pathways. Studies in transformed cell lines have implicated specific domains in the cytoplasmic trail of CD28 as important in signaling, but no consensus exists as to what is required for CD28 function in primary cells or in vivo responses. The data in primary T cells demonstrates a requirement for specific proline mediated interactions with the non-receptor tyrosine kinase lck in the regulation of T cell proliferation by CD28. The PI hypothesizes that multiple distinct structural domains of CD28 modulate specific features of T cell activation and differentiation. To address this, the following specific aims have been proposed: 1) determine the structural features of CD28 required for co-stimulation of primary T cells in vitro; and 2) characterize the specific cellular and molecular determinants by which CD28 regulates airway inflammation in vivo. These studies will provide critical data as to the regulation of T cell directed immune responses, and provide a rational basis for the development of new therapeutic strategies in the treatment of inflammatory lung disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL062683-04
Application #
6629025
Study Section
Lung Biology and Pathology Study Section (LBPA)
Program Officer
Noel, Patricia
Project Start
2000-02-15
Project End
2005-07-31
Budget Start
2003-02-01
Budget End
2005-07-31
Support Year
4
Fiscal Year
2003
Total Cost
$335,851
Indirect Cost
Name
Washington University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Gmyrek, Grzegorz B; Pingel, Jeanette; Choi, Jaehyuk et al. (2017) Functional analysis of acquired CD28 mutations identified in cutaneous T cell lymphoma. Cell Immunol 319:28-34
Rozanski, Cheryl H; Utley, Adam; Carlson, Louise M et al. (2015) CD28 Promotes Plasma Cell Survival, Sustained Antibody Responses, and BLIMP-1 Upregulation through Its Distal PYAP Proline Motif. J Immunol 194:4717-28
Mahmud, Shawn A; Manlove, Luke S; Schmitz, Heather M et al. (2014) Costimulation via the tumor-necrosis factor receptor superfamily couples TCR signal strength to the thymic differentiation of regulatory T cells. Nat Immunol 15:473-81
Boomer, Jonathan S; Deppong, Christine M; Shah, Dulari D et al. (2014) Cutting edge: A double-mutant knockin of the CD28 YMNM and PYAP motifs reveals a critical role for the YMNM motif in regulation of T cell proliferation and Bcl-xL expression. J Immunol 192:3465-9
Deppong, Christine M; Bricker, Traci L; Rannals, Brandy D et al. (2013) CTLA4Ig inhibits effector T cells through regulatory T cells and TGF-?. J Immunol 191:3082-9
Deppong, Christine M; Green, Jonathan M (2013) Experimental advances in understanding allergic airway inflammation. Front Biosci (Schol Ed) 5:167-80
Pagán, Antonio J; Pepper, Marion; Chu, H Hamlet et al. (2012) CD28 promotes CD4+ T cell clonal expansion during infection independently of its YMNM and PYAP motifs. J Immunol 189:2909-17
Deppong, Christine M; Xu, Jian; Brody, Steven L et al. (2012) Airway epithelial cells suppress T cell proliferation by an IFN?/STAT1/TGF?-dependent mechanism. Am J Physiol Lung Cell Mol Physiol 302:L167-73
Vang, Kieng B; Yang, Jianying; Pagán, Antonio J et al. (2010) Cutting edge: CD28 and c-Rel-dependent pathways initiate regulatory T cell development. J Immunol 184:4074-7
Boomer, Jonathan S; Green, Jonathan M (2010) An enigmatic tail of CD28 signaling. Cold Spring Harb Perspect Biol 2:a002436

Showing the most recent 10 out of 19 publications