The cognitive deficits that occur in schizophrenia are arguably the most debilitating of the symptoms, and the most resistant to pharmacological treatment. While the atypical antipsychotic drug, clozapine, is the one of the few drugs with any success in treating the negative and cognitive symptoms of schizophrenia, its mechanism of action is not fully understood and this has hindered development of other agents that are more effective than clozapine and lack its dangerous side effects. In man, repeated use of phencyclidine (PCP) can often induce an enduring schizophrenic-like syndrome. In the monkey, we have found that subchronic exposure to PCP induces a decrease in doparnine function in the prefrontal cortex (PFC), which persists for more than a month. Demonstrates, neurochemical and anatomical specificity. This PCP-induced PFC dopamine deficiency correlates with cognitive impairments in the monkey, which resemble those occurring in schizophrenia Furthermore, these cognitive deficits are partially ameliorated by administration of clozapine Using in vivo and ex vivo techniques in rats and monkeys, this project will examine the mechanisms responsible for the neurobiological changes induced by repeated PCP administration on the anatomical integrity, neurotransmitter regulation and behavioral functions associated with the PFC. In addition, the mechanisms involved in the pharmacological reversal of the cognitive deficits produced by subchronic exposure to PCP will be evaluated. The research plan will address the following four specific aims: (1) What neurobiological changes; responsible for the reduction in dopamine function in the PFC following repeated PCP administration, (2) clozapine's ability to reverse the PCP-induced cognitive impairment mediated by a preferential increase dopamine turnover in the PFC, and what receptors are essential for this action? (3) Determine if atypical antipsychotic drugs (or receptor specific agents) that reverse the PFC dopamine deficit in PCP-treated monkey attenuate the cognitive impairments, and (4) Determine whether there are regionally specific adaptive changes the parvalbumin GABAergic interneurons of the PFC in the monkey repeatedly treated with PCP. The generation of critical neurochemical and behavioral data in this monkey model of PFC dopamine deficiency and impaired cognition will provide important new insights concerning the neural systems relevant the frontal cortical cognitive dysfunction in schizophrenia. These data will aid in the development of novel strategies for ameliorating the neurochemical and behavioral deficits in this potential animal model, and in the cognitive dysfunctions associated with schizophrenia and other psychiatric disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH057483-06
Application #
6627598
Study Section
Special Emphasis Panel (ZRG1-BDCN-6 (01))
Program Officer
Winsky, Lois M
Project Start
1997-09-25
Project End
2005-12-31
Budget Start
2003-01-01
Budget End
2003-12-31
Support Year
6
Fiscal Year
2003
Total Cost
$386,788
Indirect Cost
Name
Yale University
Department
Psychiatry
Type
Schools of Medicine
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Elsworth, John D; Groman, Stephanie M; Jentsch, James D et al. (2014) Primate phencyclidine model of schizophrenia: sex-specific effects on cognition, brain derived neurotrophic factor, spine synapses, and dopamine turnover in prefrontal cortex. Int J Neuropsychopharmacol 18:
Elsworth, John D; Roth, Robert H (2013) Pregnancy, a risky time: keep calm, clean, and carry on! Biol Psychiatry 74:478-9
Elsworth, John D; Leranth, Csaba; Redmond Jr, D Eugene et al. (2013) Loss of asymmetric spine synapses in prefrontal cortex of motor-asymptomatic, dopamine-depleted, cognitively impaired MPTP-treated monkeys. Int J Neuropsychopharmacol 16:905-12
Miller, Brooke H; Zeier, Zane; Xi, Li et al. (2012) MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function. Proc Natl Acad Sci U S A 109:3125-30
Elsworth, John D; Groman, Stephanie M; Jentsch, J David et al. (2012) Asenapine effects on cognitive and monoamine dysfunction elicited by subchronic phencyclidine administration. Neuropharmacology 62:1442-52
Abizaid, A; Mineur, Y S; Roth, R H et al. (2011) Reduced locomotor responses to cocaine in ghrelin-deficient mice. Neuroscience 192:500-6
Elsworth, John D; Hajszan, Tibor; Leranth, Csaba et al. (2011) Loss of asymmetric spine synapses in dorsolateral prefrontal cortex of cognitively impaired phencyclidine-treated monkeys. Int J Neuropsychopharmacol 14:1411-5
Elsworth, John D; Morrow, Bret A; Hajszan, Tibor et al. (2011) Phencyclidine-induced loss of asymmetric spine synapses in rodent prefrontal cortex is reversed by acute and chronic treatment with olanzapine. Neuropsychopharmacology 36:2054-61
Jentsch, J David; Sanchez, Diana; Elsworth, John D et al. (2008) Clonidine and guanfacine attenuate phencyclidine-induced dopamine overflow in rat prefrontal cortex: mediating influence of the alpha-2A adrenoceptor subtype. Brain Res 1246:41-6
Elsworth, John D; Jentsch, J David; Morrow, Bret A et al. (2008) Clozapine normalizes prefrontal cortex dopamine transmission in monkeys subchronically exposed to phencyclidine. Neuropsychopharmacology 33:491-6

Showing the most recent 10 out of 25 publications