Voltage-dependent Ca2+ channels are vital for regulated Ca2+ entry and Ca2+ signaling in neurons. Functional studies have uncovered several types of Ca2+ channels, including L-, N-, T- and P- type, distinguished by pharmacology, electrophysiology and neuronal distribution. More recently, molecular cloning has revealed an even greater diversity arising from multiple genes and alternative splicing. The availability of cloned cDNAs for Ca2+ channel subunits opens up new approaches to molecular determinants of key Ca2+ channel features. Ca2+ channel selectivity for permanent and blocking ions. Mutagenesis experiments will probe the contributions of a hypothesized ring of glutamate residues within the pore, a putative outer ring of negatively charged residues, and other structural features. Changes in selectivity for Ca2+ and blocking cations, pore size, and ion-ion interactions will be tested. High-affinity binding of peptide toxins. omega-CTx-GVIA blocks N-type channels and omega-CTx-MVIIC is a potent blocker of BI channels highly expressed in cerebellum. What is the structural basis for the potent block? Is toxin specificity determined by residues near the outer mouth of the pore? Such questions will be addressed with chimeric constructs and point mutants. This may help further development of type-selective agents. G-proteins, gating modes and modulation of N-type channels. N-type Ca2+ channels display multiple patterns of gating (modes). Norepinephrine down-modulates Ca2+ channel entry by biasing against a mode with high open probability (p) and in favor of a low-p mode or no activity at all, modulation thought to involve G-protein. Experiments will explore what region(s) of the Ca2+ channel are required for G-protein signaling, whether the interaction is direct, and how neurotransmitter modulation, prepulse disinhibition, and spontaneous modal switching are altered by functional ablation of specific G-proteins. Interactions between Ca2+ channels and presynaptic membrane and vesicle membrane proteins. Antibodies to synaptotagmin (p65) or syntaxin (p35) are known to immunoprecipitate omega-CTx-GVIA binding sites (N-type Ca2+ channels). Do such interactions exist for other channel types? What are the molecular determinants of such interactions? What are the functional consequences of such interactions for transmitter release?

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
2R01NS024067-09
Application #
3408331
Study Section
Physiology Study Section (PHY)
Project Start
1988-08-01
Project End
1997-06-30
Budget Start
1993-07-01
Budget End
1994-06-30
Support Year
9
Fiscal Year
1993
Total Cost
Indirect Cost
Name
Stanford University
Department
Type
Schools of Medicine
DUNS #
800771545
City
Stanford
State
CA
Country
United States
Zip Code
94305
Cohen, Samuel M; Suutari, Benjamin; He, Xingzhi et al. (2018) Calmodulin shuttling mediates cytonuclear signaling to trigger experience-dependent transcription and memory. Nat Commun 9:2451
Mullins, Caitlin; Fishell, Gord; Tsien, Richard W (2016) Unifying Views of Autism Spectrum Disorders: A Consideration of Autoregulatory Feedback Loops. Neuron 89:1131-1156
Cohen, Samuel M; Ma, Huan; Kuchibhotla, Kishore V et al. (2016) Excitation-Transcription Coupling in Parvalbumin-Positive Interneurons Employs a Novel CaM Kinase-Dependent Pathway Distinct from Excitatory Neurons. Neuron 90:292-307
Cohen, Samuel M; Li, Boxing; Tsien, Richard W et al. (2015) Evolutionary and functional perspectives on signaling from neuronal surface to nucleus. Biochem Biophys Res Commun 460:88-99
Rosenberg, Evan C; Tsien, Richard W; Whalley, Benjamin J et al. (2015) Cannabinoids and Epilepsy. Neurotherapeutics 12:747-68
Cohen, Samuel M; Tsien, Richard W; Goff, Donald C et al. (2015) The impact of NMDA receptor hypofunction on GABAergic neurons in the pathophysiology of schizophrenia. Schizophr Res 167:98-107
Ma, Huan; Li, Boxing; Tsien, Richard W (2015) Distinct roles of multiple isoforms of CaMKII in signaling to the nucleus. Biochim Biophys Acta 1853:1953-7
Ma, Huan; Groth, Rachel D; Cohen, Samuel M et al. (2014) ?CaMKII shuttles Ca²?/CaM to the nucleus to trigger CREB phosphorylation and gene expression. Cell 159:281-94
Ma, Huan; Cohen, Samuel; Li, Boxing et al. (2013) Exploring the dominant role of Cav1 channels in signalling to the nucleus. Biosci Rep 33:97-101
Owen, Scott F; Tuncdemir, Sebnem N; Bader, Patrick L et al. (2013) Oxytocin enhances hippocampal spike transmission by modulating fast-spiking interneurons. Nature 500:458-62

Showing the most recent 10 out of 56 publications