Multiple ion channels influence neuronal excitability, and these are often subject to modulation by neurotransmitters. Prominent among these is a background or 'leak' K+ channel that is targeted for inhibition by neurotransmitters, leading to membrane depolarization and increased excitability. G protein-coupled receptors capable of mediating this effect have been identified for many transmitters (invariably those that couple via Gaq/l 1-family subunits), and whereas it represents a predominant mechanism for slow synaptic excitation throughout the brain, this phenomenon is particularly well described in motoneurons. Despite its widespread presence, the molecular identity of leak K+ channel(s) targeted for inhibition are unknown in most native systems, and the mechanisms of receptor-mediated channel inhibition remain obscure. A major goal of the current proposal is to identify the molecular substrate for a motoneuronal leak K about current. Evidence from our laboratory indicates that the two-pore domain K+ channel, TASK-1 (KCNK3), contributes to a pH- and neurotransmitter-sensitive leak K+ channel in hypoglossal motoneurons. New observations indicate that the closely related TASK-3 (KCNK9) subunit is also expressed in motoneurons. Moreover, preliminary data suggest that it may form heterodimers with TASK-1. We hypothesize that TASK-1 and TASK-3 form functional heterodimers that contribute to motoneuronal pH- and neurotransmitter-sensitive leak K+ currents. The second major goal is to characterize molecular mechanisms involved in receptor-mediated inhibition of these channels, focusing in turn on the molecules that represent the beginning (i.e., G proteins) and end points (TASK channels) of the receptor-activated signaling pathway. We hypothesize that Gag-family subunits provide the initial receptor-activated signal and that key determinants located in cytoplasmic domains of TASK channels are required for receptor-mediated TASK channel inhibition. For these studies, we utilize two experimental systems: a model system, based on heterologous expression of Gaq-coupled receptors and TASK channel subunits in mammalian cells, which recapitulates this modulatory mechanism; and a native neuronal system, in which heterologous gene expression is obtained in motoneurons using adenovirus vectors. The following Specific Aims are proposed: To determine if TASK channels can form functional heterodimers; To determine G protein subunits and channel domains involved in receptor-mediated TASK inhibition; and To determine contributions of TASK channels to motoneuronal currents and mechanisms of their modulation. These experiments will characterize molecular substrates underlying a native neurotransmitter-modulated leak K+ current and test key aspects of the mechanisms by which they are modulated.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS033583-08
Application #
6639472
Study Section
Special Emphasis Panel (ZRG1-MDCN-3 (01))
Program Officer
Chen, Daofen
Project Start
1995-02-01
Project End
2006-03-31
Budget Start
2003-04-01
Budget End
2004-03-31
Support Year
8
Fiscal Year
2003
Total Cost
$294,962
Indirect Cost
Name
University of Virginia
Department
Pharmacology
Type
Schools of Medicine
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Zhang, Haopeng; Dong, Hailong; Cilz, Nicholas I et al. (2016) Neurotensinergic Excitation of Dentate Gyrus Granule Cells via G?q-Coupled Inhibition of TASK-3 Channels. Cereb Cortex 26:977-90
Vu, Michael T; Du, Guizhi; Bayliss, Douglas A et al. (2015) TASK Channels on Basal Forebrain Cholinergic Neurons Modulate Electrocortical Signatures of Arousal by Histamine. J Neurosci 35:13555-67
Morenilla-Palao, Cruz; Luis, Enoch; Fernández-Peña, Carlos et al. (2014) Ion channel profile of TRPM8 cold receptors reveals a role of TASK-3 potassium channels in thermosensation. Cell Rep 8:1571-82
Lazarenko, Roman; Geisler, Jessica; Bayliss, Douglas et al. (2014) D-chiro-inositol glycan stimulates insulin secretion in pancreatic ? cells. Mol Cell Endocrinol 387:1-7
Chiu, Yu-Hsin; Ravichandran, Kodi S; Bayliss, Douglas A (2014) Intrinsic properties and regulation of Pannexin 1 channel. Channels (Austin) 8:103-9
Lohman, Alexander W; Weaver, Janelle L; Billaud, Marie et al. (2012) S-nitrosylation inhibits pannexin 1 channel function. J Biol Chem 287:39602-12
Guagliardo, Nick A; Yao, Junlan; Hu, Changlong et al. (2012) TASK-3 channel deletion in mice recapitulates low-renin essential hypertension. Hypertension 59:999-1005
Sandilos, Joanna K; Bayliss, Douglas A (2012) Physiological mechanisms for the modulation of pannexin 1 channel activity. J Physiol 590:6257-66
Sandilos, Joanna K; Chiu, Yu-Hsin; Chekeni, Faraaz B et al. (2012) Pannexin 1, an ATP release channel, is activated by caspase cleavage of its pore-associated C-terminal autoinhibitory region. J Biol Chem 287:11303-11
Lazarenko, Roman M; Stornetta, Ruth L; Bayliss, Douglas A et al. (2011) Orexin A activates retrotrapezoid neurons in mice. Respir Physiol Neurobiol 175:283-7

Showing the most recent 10 out of 18 publications