Targeting of neurotransmitter receptors to synapses is essential for efficient synaptic transmission and plays an important role in the regulation of synaptic plasticity in the brain. AMPA receptors are the major excitatory neurotransmitter receptors in the central nervous system. We have identified several PDZ domain-containing proteins that specifically interact with AMPA receptors and are critical for the regulation of AMPA receptor membrane trafficking and synaptic plasticity. Several of these proteins, including GRIP1 and GRIP2 (Glutamate Receptor Interacting Proteins) and PICK1 (Protein Interactor with C Kinase), specifically interact with the C-terminal domains of the AMPA receptor subunits. We have found that these interactions are dynamically regulated by protein phosphorylation of the receptor subunits. We have identified additional members of this protein complex, including NSF, GRASP1, KIBRA, WWC2 and SNX27, which are involved in the regulation of AMPA receptor membrane trafficking. Interestingly, genetic variants of these proteins have recently been associated with several cognitive disorders. In this research proposal we plan to use several complementary approaches to further characterize the structure and function of this PDZ based membrane trafficking complex and determine its role in AMPA receptor synaptic targeting, synaptic plasticity and cognitive behavior. In complementary experiments, we will use knockout and knockin mice of this complex to elucidate the role of the PDZ domain-based receptor complexes in several forms of plasticity in the hippocampus, cerebellum, amygdala, somatosensory and visual cortex. Finally, we will analyze behavioral phenotypes, including spatial and motor learning and fear conditioning and extinction, in these knockout and knockin mice to determine the role of these regulatory mechanisms in higher brain processes.

Public Health Relevance

This research will elucidate basic molecular mechanisms that regulate synaptic transmission and plasticity in the brain but it also has broad relevance for many brain disorders. Dysfunction of synaptic transmission and synaptic plasticity underlies many neurological and psychiatric diseases. This research may therefore reveal novel targets for the development of therapeutic treatments for several disorders including pain, drug addiction, schizophrenia, autism, intellectual disability and Alzheimer's and Parkinson's disease.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Synapses, Cytoskeleton and Trafficking Study Section (SYN)
Program Officer
Churn, Severn Borden
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
Schools of Medicine
United States
Zip Code
Barber, Casey N; Huganir, Richard L; Raben, Daniel M (2018) Phosphatidic acid-producing enzymes regulating the synaptic vesicle cycle: Role for PLD? Adv Biol Regul 67:141-147
Zhang, Lei; Zhang, Peng; Wang, Guangfu et al. (2018) Ras and Rap Signal Bidirectional Synaptic Plasticity via Distinct Subcellular Microdomains. Neuron 98:783-800.e4
Lin, Edward Y S; Silvian, Laura F; Marcotte, Douglas J et al. (2018) Potent PDZ-Domain PICK1 Inhibitors that Modulate Amyloid Beta-Mediated Synaptic Dysfunction. Sci Rep 8:13438
Heo, Seok; Diering, Graham H; Na, Chan Hyun et al. (2018) Identification of long-lived synaptic proteins by proteomic analysis of synaptosome protein turnover. Proc Natl Acad Sci U S A 115:E3827-E3836
Diering, Graham H; Huganir, Richard L (2018) The AMPA Receptor Code of Synaptic Plasticity. Neuron 100:314-329
Lagerlöf, Olof; Hart, Gerald W; Huganir, Richard L (2017) O-GlcNAc transferase regulates excitatory synapse maturity. Proc Natl Acad Sci U S A 114:1684-1689
Lim, Chae-Seok; Kang, Xi; Mirabella, Vincent et al. (2017) BRaf signaling principles unveiled by large-scale human mutation analysis with a rapid lentivirus-based gene replacement method. Genes Dev 31:537-552
Song, Qian; Zheng, Hong-Wei; Li, Xu-Hui et al. (2017) Selective Phosphorylation of AMPA Receptor Contributes to the Network of Long-Term Potentiation in the Anterior Cingulate Cortex. J Neurosci 37:8534-8548
Wang, Qiang; Chiu, Shu-Ling; Koropouli, Eleftheria et al. (2017) Neuropilin-2/PlexinA3 Receptors Associate with GluA1 and Mediate Sema3F-Dependent Homeostatic Scaling in Cortical Neurons. Neuron 96:1084-1098.e7
Chiu, Shu-Ling; Diering, Graham Hugh; Ye, Bing et al. (2017) GRASP1 Regulates Synaptic Plasticity and Learning through Endosomal Recycling of AMPA Receptors. Neuron 93:1405-1419.e8

Showing the most recent 10 out of 89 publications