Traumatic injury of the spinal cord in humans leads to permanent paralysis and other serious medical complications. Paralysis is a result of lost neuronal connectivity between the brain and spinal cord motor units. The failure of severed spinal axons to recover, however, is not primarily due to an intrinsic inability to regenerate, but is a result of the central nervous system (CNS) environment that is highly refractory to axonal growth. When provided with a suitable environment, injured CNS axons do recover, extending processes over long distances and partially restoring function in animal models of spinal cord injury (SCI). Multiple CNS myelin constituents are thought to directly contribute to the regenerative failure of damaged spinal axons, including proteins called Nogo, myelin-associated glycoprotein (MAG), and oligodendrocyte-myelin glycoprotein (OMgp). The main objective of this study is to gain insights into the molecular and cellular mechanisms of myelin-mediated inhibition of axonal growth. A detailed understanding of the biology of axon-glia interaction is a prerequisite to devising strategies aimed at lowering the growth inhibitory barrier of adult CNS myelin and to promote neuronal repair following traumatic injury of the CNS. The identification, of a novel family of receptor proteins comprised of members with distinct binding specificities toward established myelin inhibitors of axonal growth is at the heart of our investigations. A major goal of the proposed study is to define the role of these receptors in neuronal responses to CNS myelin inhibitors. To functionally characterize members of this gene family, we will engineer recombinant viral vectors for gain-of-function studies in neurons. Mouse genetics will be used for loss-of-function studies in vivo. In a parallel approach, we will develop mutated receptors with antagonistic function. Mutated soluble receptors that still bind ligand but no longer possess the ability to signal axonal growth inhibition will be assessed for their potential to promote axonal growth on myelin substrate in vitro. Coupling our biochemical approaches with in vitro neurite outgrowth assays and in vivo functional studies will provide a strong basis to elucidate the role played by novel receptor-ligand interactions in neurite outgrowth inhibition. Together, this family of receptor proteins may provide new molecular handles for the design of therapeutic interventions for CNS injuries.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS047333-04
Application #
7236754
Study Section
Neurodifferentiation, Plasticity, and Regeneration Study Section (NDPR)
Program Officer
Kleitman, Naomi
Project Start
2004-08-02
Project End
2008-08-31
Budget Start
2007-05-01
Budget End
2008-08-31
Support Year
4
Fiscal Year
2007
Total Cost
$48,886
Indirect Cost
Name
University of Rochester
Department
Neurology
Type
Schools of Dentistry
DUNS #
041294109
City
Rochester
State
NY
Country
United States
Zip Code
14627
Dickendesher, Travis L; Baldwin, Katherine T; Mironova, Yevgeniya A et al. (2012) NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans. Nat Neurosci 15:703-12
Semavina, Mariya; Saha, Nayanendu; Kolev, Momchil V et al. (2011) Crystal structure of the Nogo-receptor-2. Protein Sci 20:684-9
Matsuoka, Ryota L; Chivatakarn, Onanong; Badea, Tudor C et al. (2011) Class 5 transmembrane semaphorins control selective Mammalian retinal lamination and function. Neuron 71:460-73
Minor, Kenneth H; Bournat, Juan C; Toscano, Nicole et al. (2011) Decorin, erythroblastic leukaemia viral oncogene homologue B4 and signal transducer and activator of transcription 3 regulation of semaphorin 3A in central nervous system scar tissue. Brain 134:1140-55
Raiker, Stephen J; Lee, Hakjoo; Baldwin, Katherine T et al. (2010) Oligodendrocyte-myelin glycoprotein and Nogo negatively regulate activity-dependent synaptic plasticity. J Neurosci 30:12432-45
Pasterkamp, R Jeroen; Giger, Roman J (2009) Semaphorin function in neural plasticity and disease. Curr Opin Neurobiol 19:263-74
Robak, Laurie A; Venkatesh, Karthik; Lee, Hakjoo et al. (2009) Molecular basis of the interactions of the Nogo-66 receptor and its homolog NgR2 with myelin-associated glycoprotein: development of NgROMNI-Fc, a novel antagonist of CNS myelin inhibition. J Neurosci 29:5768-83
Giger, Roman J; Venkatesh, Karthik; Chivatakarn, Onanong et al. (2008) Mechanisms of CNS myelin inhibition: evidence for distinct and neuronal cell type specific receptor systems. Restor Neurol Neurosci 26:97-115
Lee, Hakjoo; Raiker, Stephen J; Venkatesh, Karthik et al. (2008) Synaptic function for the Nogo-66 receptor NgR1: regulation of dendritic spine morphology and activity-dependent synaptic strength. J Neurosci 28:2753-65
Chivatakarn, Onanong; Kaneko, Shinjiro; He, Zhigang et al. (2007) The Nogo-66 receptor NgR1 is required only for the acute growth cone-collapsing but not the chronic growth-inhibitory actions of myelin inhibitors. J Neurosci 27:7117-24

Showing the most recent 10 out of 13 publications