The structural and functional integrity of the basal forebrain (BF) is an absolute requirement for maintaining behavioral and electrographic (EEG) wake. The mechanisms and substrates by which the BF regulates EEG and neurobehavioral arousal remains however poorly understood. A review of the relevant literature reveals that the vast majority of studies on BF circuitry have focused on the corticopetal cholinergic BF system in physiological (EEG and behavioral arousal) and pathophysiological (neurodegenerative disorders) regulation, despite the facts that 1) lesions of the cholinergic BF system produce limited changes in EEG or behavioral wake;and 2) the BF also contains a population of cortically projecting GABAergic neurons that roughly intermingle with the cholinergic neurons. While it has been appreciated for some time that other corticopetal BF neurotransmitter systems may interact or work in parallel with cholinergic neurons in modulating cortical circuitry, the contribution of GABAergic BF neurons, and in particular those projecting to the cortex, to this process remains largely unexplored. In this proposal we seek to determine the in vitro (cellular) and in vivo (system) mechanisms and substrates by which the BF GABAergic neurons contribute to EEG and behavioral arousal, including sleep-wake cycles. We hypothesize that the BF GABAergic population is critically involved in maintaining EEG and behavioral wake and that this influence is mediated primarily by cortically-projecting GABAergic BF neurons and not by BF GABAergic interneurons or BF GABAergic neurons that project to other brain regions, such as the lateral hypothalamus. The experimental dissection of the role of BF GABAergic neurons, and in particular the corticopetal BF GABAergic neurons in EEG and behavioral arousal, has however proven a considerable challenge given the multiple transmitter systems and sub-populations of GABAergic neurons within the BF. We have therefore sought to develop and validate novel viral-based pharmacogenetic and conditional promoter-specific transgene expression systems to test our hypothesis through the selective isolation and manipulation of BF GABAergic neurons. Specifically we will use the so-called DREADD (designer receptors exclusively activated by designer drugs) system to reversibly activate or silence BF GABAergic neurons, including the selective manipulation of cortically-projecting BF GABAergic neurons, both in vitro and in vivo. The results from this experimental work will provide important information regarding the substrates that are necessary to produce and maintain arousal and emphasize the critical contribution of BF GABAergic neurons to these processes in freely behaving, unrestrained animals.

Public Health Relevance

This program seeks to determine the role of GABAergic basal forebrain neurons in the regulation of electrographic and behavioral wakefulness. In addition to revealing the neurobiological role of the basal forebrain GABAergic system in normal function, the results from the proposed studies may provide critical insight into the pathogenesis of a host of neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, schizophrenia, and the cognitive impairments of normal aging and disorders of consciousness.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Exploratory/Developmental Grants (R21)
Project #
Application #
Study Section
Clinical Neuroplasticity and Neurotransmitters Study Section (CNNT)
Program Officer
He, Janet
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Beth Israel Deaconess Medical Center
United States
Zip Code
Agostinelli, Lindsay J; Ferrari, Loris L; Mahoney, Carrie E et al. (2017) Descending projections from the basal forebrain to the orexin neurons in mice. J Comp Neurol 525:1668-1684
Pedersen, Nigel P; Ferrari, Loris; Venner, Anne et al. (2017) Supramammillary glutamate neurons are a key node of the arousal system. Nat Commun 8:1405
Ferrari, L L; Agostinelli, L J; Krashes, M J et al. (2016) Dynorphin inhibits basal forebrain cholinergic neurons by pre- and postsynaptic mechanisms. J Physiol 594:1069-85
Arrigoni, Elda; Chen, Michael C; Fuller, Patrick M (2016) The anatomical, cellular and synaptic basis of motor atonia during rapid eye movement sleep. J Physiol 594:5391-414
Chen, Michael C; Ferrari, Loris; Sacchet, Matthew D et al. (2015) Identification of a direct GABAergic pallidocortical pathway in rodents. Eur J Neurosci 41:748-59
Anaclet, Christelle; Pedersen, Nigel P; Ferrari, Loris L et al. (2015) Basal forebrain control of wakefulness and cortical rhythms. Nat Commun 6:8744
Arrigoni, Elda; Saper, Clifford B (2014) What optogenetic stimulation is telling us (and failing to tell us) about fast neurotransmitters and neuromodulators in brain circuits for wake-sleep regulation. Curr Opin Neurobiol 29:165-71