. Infections caused by the filamentous fungus Aspergillus fumigatus and related species are associated with significant morbidity and mortality despite contemporary antifungal drug therapies. Many factors contribute to poor treatment outcomes including the physiological state of the fungus at the site of infection and the global emergence of triazole drug resistant strains. One major regulatory mechanism used by the fungus to progress disease and resist triazole drug activity is proteolytic activation of the transcriptional regulator, SrbA. Activation of SrbA in vivo is absolutely required for fungal virulence and intrinsic triazole drug resistance, as null mutants of SrbA regulatory factors such as the fungal specific activating serine protease RbdB and E3 ubiquitin ligases (DSCs) are avirulent in animal models of invasive aspergillosis (IA) and have significant increases in triazole susceptibility. The objective of this proposal in response to RFA-AI-17-036 is to identify small molecules that inhibit SrbA activation and develop them into advanced therapeutic candidates with broad-spectrum activity against triazole resistant filamentous fungi. Potent inhibitors of the SrbA- dependent signaling pathway will be developed for clinical use as an adjunctive therapy in combination with a triazole antifungal agent that is used to treat IA. The adjunctive therapy is expected to provide several advantages over triazole monotherapy, including growth inhibition in hypoxic conditions and increased antifungal activity of the triazole drug in both drug susceptible and drug resistant infections. As the SrbA pathway is conserved among most human fungal pathogens, some of which are inherently azole resistant, we anticipate broad spectrum clinical utility beyond infections caused by A. fumigatus. Our approach leverages the availability of well characterized protease and ligase inhibitor chemical libraries, both known druggable targets in many disease settings, with the expertise of Microbiotix Inc. and the Cramer Laboratory at Dartmouth. The R21 phase of this application will utilize high-throughput cell based screens of defined targeted small molecule libraries to identify and confirm SrbA regulatory protease and/or ligase inhibitors and validate their antifungal activity, pathway specificity, and mammalian toxicity of early hits and leads. In the R33 phase, validated hits will be chemically optimized, validated, defined pharmacologically, determine mechanism of action, and finally proceed to in vivo pharmacologic and toxicology profiling and antifungal efficacy in established murine models of invasive aspergillosis.

Public Health Relevance

Aspergillus fumigatus is a leading causal organism for the diseases collectively termed Aspergillosis. Treatment outcomes remain poor in part due to rapidly emerging antifungal drug resistance. This proposal seeks to identify small molecules that synergize with triazole antifungals and overcome increasingly common drug resistant strains.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Exploratory/Developmental Grants Phase II (R33)
Project #
4R33AI140878-03
Application #
10320260
Study Section
Special Emphasis Panel (ZAI1)
Program Officer
Liu, Baoying
Project Start
2019-02-01
Project End
2024-01-31
Budget Start
2021-02-01
Budget End
2022-01-31
Support Year
3
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Dartmouth College
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
03755