Secreted and cell-surface-localized Immunoglobulin Superfamily proteins (?extracellular IgSFs?) are important class of proteins, which includes proven targets for the treatment of autoimmune diseases and cancer. The human proteome contains ~500 extracellular IgSFs, the largest superfamily of cell surface molecules that contribute to the regulation of innate and adaptive immunity, via specific IgSF:IgSF interactions at the ?Immune Synapse? formed between antigen-presenting cells and T-cells. Our long-term goal is to understand the molecular basis of interactions in the immune synapse. This requires the mapping of receptor-ligand interactions among the vast number of un-annotated IgSFs, and to gain insight about the specificity of these interactions. Subsequently, we plan to leverage our newly-gained insights into redesigning protein interfaces for specificity, both in order to generate new reagents that in turn can further interrogate the regulatory mechanisms within the immune synapse, and to establish potential new drug leads that can rationally modulate the immune response in diseases. In this application we will further develop our protein design-aided pharmacophore approach, ProtLID and utilize it for identifying cognate partners in the immune synapse, and for designing specific interfaces. We will also explore to synergisticly combine computational and experimental protein engineering techniques. We will develop an interdisciplinary approach where computationally designed, residue-based pharmacophore descriptions of the receptor-ligand interface are used to direct the library design in subsequent phage display experiments, allowing for the effective exploration of engineered constructs. All our computational results will be followed up with in vitro biochemical and cell-based experimental validation. These studies will directly expand the current knowledgebase of receptor-ligand pairs in the immune synapse and yield mutant molecules, with altered affinities and selectivities for therapeutic applications.

Public Health Relevance

The immunological synapse formed between antigen presenting cells and T cells is a complex network of hundreds of protein ligand-receptor interactions that modulate the strength, course and duration of an immune response. This proposal aims at developing novel computational techniques to identify cognate binding sites, and binding partners within the superfamily of cell surface anchored Immunoglobulin proteins and to experimentally verify these predictions. The new insights gained will be leveraged in combination with high throughput experimental protein engineering technique to redesign receptor interfaces for specificity, to develop new reagents to further interrogate the function of the immune synapse and to obtain biologic drug leads for immunotherapy.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Unknown (R35)
Project #
1R35GM136357-01
Application #
9931903
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Lyster, Peter
Project Start
2020-05-01
Project End
2025-04-30
Budget Start
2020-05-01
Budget End
2021-04-30
Support Year
1
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
081266487
City
Bronx
State
NY
Country
United States
Zip Code
10461