The main objective of this renewal application is to define, at the molecular level, the antigenic sites on SV40 T antigen recognized by the cytotoxic T lymphocytes (CTL) in association with self coded major histocompatibility complex class I or class II glycoproteins. We have identified at least three distinct CTL recognition sites in the amino terminal half and one site in the carboxy terminal half of SV40 T antigen. Using CTL clones and SV40 deletion mutants, we are now proposing to, (1) determine the identify of amino acids in CTL recognition sites on T antigen and the influence of amino acids within the sites on CTL recognition in association with H-2 antigens; (2) analyses of antigenic loss variants that have escaped CTL mediated lysis for alteration in SV40 T antigen CTL recognition antigenic sites; (4) investigate the nature of T antigen recognized by CTL; and (5) study the contribution of individual antigenic sites to CTL mediated response. The approach utilized here will allow us to relate the role of SV40 T antigen in transformation and in inducing a CTL immune response to the antigenic sites on SV40 T antigen in the host undergoing oncogenesis.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Method to Extend Research in Time (MERIT) Award (R37)
Project #
Application #
Study Section
Special Emphasis Panel (NSS)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Pennsylvania State University
Schools of Medicine
United States
Zip Code
Memarnejadian, Arash; Meilleur, Courtney E; Shaler, Christopher R et al. (2017) PD-1 Blockade Promotes Epitope Spreading in Anticancer CD8+ T Cell Responses by Preventing Fratricidal Death of Subdominant Clones To Relieve Immunodomination. J Immunol 199:3348-3359
Goodwin, Erin M; Zhong, Qing; Abendroth, Catherine S et al. (2013) Anaplastic renal carcinoma expressing SV40 T antigen in a female TRAMP mouse. Comp Med 63:338-41
Maleki Vareki, S; Harding, M J; Waithman, J et al. (2012) Differential regulation of simultaneous antitumor and alloreactive CD8(+) T-cell responses in the same host by rapamycin. Am J Transplant 12:233-9
Tatum, Angela M; Watson, Alan M; Schell, Todd D (2010) Direct presentation regulates the magnitude of the CD8+ T cell response to cell-associated antigen through prolonged T cell proliferation. J Immunol 185:2763-72
Otahal, Pavel; Knowles, Barbara B; Tevethia, Satvir S et al. (2007) Anti-CD40 conditioning enhances the T(CD8) response to a highly tolerogenic epitope and subsequent immunotherapy of simian virus 40 T antigen-induced pancreatic tumors. J Immunol 179:6686-95
Otahal, Pavel; Schell, Todd D; Hutchinson, Sandra C et al. (2006) Early immunization induces persistent tumor-infiltrating CD8+ T cells against an immunodominant epitope and promotes lifelong control of pancreatic tumor progression in SV40 tumor antigen transgenic mice. J Immunol 177:3089-99
Otahal, Pavel; Hutchinson, Sandra C; Mylin, Lawrence M et al. (2005) Inefficient cross-presentation limits the CD8+ T cell response to a subdominant tumor antigen epitope. J Immunol 175:700-12
Barton, Lance F; Runnels, Herbert A; Schell, Todd D et al. (2004) Immune defects in 28-kDa proteasome activator gamma-deficient mice. J Immunol 172:3948-54
Schell, Todd D (2004) In vivo expansion of the residual tumor antigen-specific CD8+ T lymphocytes that survive negative selection in simian virus 40 T-antigen-transgenic mice. J Virol 78:1751-62
Staveley-O'Carroll, Kevin; Schell, Todd D; Jimenez, Marcela et al. (2003) In vivo ligation of CD40 enhances priming against the endogenous tumor antigen and promotes CD8+ T cell effector function in SV40 T antigen transgenic mice. J Immunol 171:697-707

Showing the most recent 10 out of 51 publications