We discovered a new modality that will allow us to effectively remove excess fluid from patients and manage hypervolemia. Accordingly, we propose the development of a simple, safe miniature portable device that can slowly remove sufficient excess fluid, on a continuous basis, from patients with congestive heart failure (CHF). During this two-year Phase I study, we will design and develop this new fluid removal process, and define the design requirements for the miniaturized device, which will include a replaceable component. This replaceable component will be designed and evaluated in an in vitro testing circuit. Measurement of inflammatory mediators and clotting factors will be made, along with the continuous monitoring of blood flow rate, and associated pressures at several points in the circuit will be made. Given that there are no such portable devices available for clinical use, this device will have strong potential for improving survival and for decreasing costs for patients with recalcitrant congestive heart failure. Aside from the implied benefit of controlling congestive heart failure and potentially reducing left ventricular hypertrophy (LVH), a major cause of morbidity and mortality in dialysis patients, this device would be expected to dramatically reduce the excess, repetitive hospitalizations commonly incurred by dialysis patients who suffer from fluid overload and pulmonary edema. Reducing the number of these emergency hospitalizations would undoubtedly be a major cost savings for the Medicare-funded End Stage Renal Disease (ESRD) and CHF treatments.

Public Health Relevance

This proposal addresses the development of a portable hemofiltration device which can be attached to a central venous catheter for the purpose of providing slow, continuous fluid removal for the maintenance of fluid balance in patients on chronic dialysis. This device would have the most value for those dialysis patients who are having difficulty in controlling blood pressure, fluid retention and pulmonary edema. The proposed design is appealing, with the utilization of a replaceable filtration unit which can be easily attached to a propulsion unit with miniature pumps for propelling blood through a hemofilter. This design could easily allow for slow, continuous fluid removal (1-3 ml/min) throughout the interdialytic period, allowing dialysis patients to avoid fluid overload. Aside from the implied benefit of controlling congestive heart failure and potentially reducing left ventricular hypertrophy (LVH), a major cause of morbidity and mortality in dialysis patients, this device would be expected to dramatically reduce the excess, repetitive hospitalizations commonly incurred by dialysis patients who suffer from fluid overload and pulmonary edema. Reducing the number of these emergency hospitalizations would undoubtedly be a major cost savings for the Medicare-funded End Stage Renal Disease (ESRD) program. This device could also be used for the management of congestive heart failure (CHF) in patients who are not on dialysis but in whom emergency admissions for pulmonary edema are a common occurrence.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Small Business Innovation Research Grants (SBIR) - Phase I (R43)
Project #
1R43HL105178-01
Application #
8002223
Study Section
Special Emphasis Panel (ZRG1-DKUS-G (11))
Program Officer
Baldwin, Tim
Project Start
2010-08-18
Project End
2012-04-30
Budget Start
2010-08-18
Budget End
2011-04-30
Support Year
1
Fiscal Year
2010
Total Cost
$299,989
Indirect Cost
Name
Novaflux Technologies, Inc.
Department
Type
DUNS #
943652065
City
Princeton
State
NJ
Country
United States
Zip Code
08540
Dukhin, Stanislav S; Tabani, Yacoob; Lai, Richard et al. (2014) Outside-In Hemofiltration for Prolonged Operation without Clogging. J Memb Sci 464:173-178