Therepairoflargecartilagelesions,whicharecontraindicatedforcurrentlyavailablefirst-linetissue regenerationtechniques,remainsasignificantclinicalproblemwithfewgoodtreatmentoptions.Previouswork atCytexhasfocusedonthedevelopmentofa3Dmicrowoventextilescaffoldforcartilagerepair,designedto functionimmediatelyafterimplantationwhileencouragingcellingrowth,proliferation,andsubsequenttissue development.Whencombinedwithmesenchymalstemcells(MSCs),wehavedemonstratedtheabilitytoform biomechanicallyfunctionalimplantsforthetreatmentoflargecartilagelesions,includingresurfacingthe femoralcondyles.However,forastemcell-basedcartilageimplanttobesuccessfulintheosteoarthritic(OA) joint,itmustwithstandthethehighdegreeofinflammationandtheassociatedcatabolicanddegenerative environmentfoundindiseasedjoints.Theobjectiveofthisproposalistoaddananti-inflammatorycapabilityto ourconstructinordertoprotecttheengineeredtissuesfromthehostilejointenvironment.Wewilltransduce theMSCsinourimplantwithaninflammation-responsivepromoterthatwilldrivetheexpressionofInterleukin 1(IL-1)receptorantagonist(IL-1Ra)orsolubletumornecrosisfactor(TNF)receptor(sTNFR),natural modulatorsthatinhibittheinflammatorysignalingofIL-1andTNF?,respectively.Theresultingcartilage constructwillprovideinflammationresistanceonlywheninflammatorysignalingispresent,thuseliminatingthe needforexogenousinjectionsandthepotentialsideeffectsassociatedwithlong-termadministrationofanti- cytokinetherapy.
In Aim1, wewillexamineourlentiviraltransductionconditionsinanefforttominimizetherisk ofgeneticsideeffectsintheMSCs.Theresultingcartilageconstructswillalsobeanalyzedtoensurethatthey containnoactivelentiviralparticles,whichcouldbereleaseduponimplantation,therebyvalidatingtheclinical safetyofthegeneticapproach.
In Aim2, wewilluseourbiomimeticcartilageimplantstoresurfacethemedial femoralcondyleinagoatmodelofunicompartmentalosteoarthritis.Ourcurrenttissueengineeredimplantwill becomparedtoimplantsinwhichtheMSCpopulationhasbeentransducedtoexpressanti-cytokine therapeuticsineitheraconstant,oraninflammation-responsivemanner.Allanimalswillbeevaluatedat3,6,9, and12-monthtimepointsfollowingrepairthroughclinicallyrelevantmeasuresoffunction,pain,andimaging usingX-RaysandMRI.Atsacrifice,jointtissueswillbeassessedhistologicallyandbiomechanicallytoquantify degradativechangesandOAprogression.Serum,synovialfluid,andsynoviumwillbeanalyzedforbiomarkers ofosteoarthritis,aswellasforadverseinflammatoryreactionsandtotestforweardebrisinthejoint. Additionally,allmajororgansystemswillbeexaminedtoassessthesafetyofimplantingtransducedcellsand utilizinglocalizedanti-cytokinetherapy.Ultimately,thisproposalwilldevelopacartilageresurfacingproduct thatisnotonlybeabletofunctionmechanicallywithinthejointbutwillalsoprotectitselfandsurrounding tissuesfrominflammatorysignaling,andhopefullypreventfurtherOAprogression.

Public Health Relevance

Osteoarthritis is a significant source of pain and disability that affects over 30 million adults in the United States. Diseased and damaged joints exhibit elevated levels of inflammation that can compromise the effectiveness of biologically-based cartilage repair strategies. The objective of this study is to develop functionalengineeredarticularcartilagethatcansensethedegreeofinflammationinthejointenvironmentand respondinananti-inflammatorymannertoprotectitselffromdegradation.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Small Business Innovation Research Grants (SBIR) - Phase II (R44)
Project #
5R44AG059310-02
Application #
9564758
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Williams, John
Project Start
2017-09-15
Project End
2019-05-31
Budget Start
2018-06-01
Budget End
2019-05-31
Support Year
2
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Cytex Therapeutics Inc.
Department
Type
DUNS #
783502466
City
Durham
State
NC
Country
United States
Zip Code
27704