A major goal of biologists is to """"""""see"""""""" inside cells to discover where and when each individual protein acts. Conventional light microscopy approaches limit our spatial resolution to ~250 nm, which in several instances is only slightly smaller than the organism itself. This classic physical limitation has been broken through the development of Super-Resolution microscopy. Our proposal is to acquire the DeltaVision OMX SuperResolution microscope system that will allow our users to achieve sub-diffraction subcellular resolution to address a number of important biological problems. The power of this system is that the super resolution is achieved with conventional lasers and computer technology, the microscope system is a standard high-end widefield microscope, conventional fluorophores can be used obviating the need to develop new reagents, up to 4 color labeling can be achieved by the use of multiple laser lines, and the system can be maintained and operated by an experienced cell biologist. Practically speaking, the system has extended the resolution barrier to approximately 150 nm in both the lateral and axial direction. The system is also engineered to be able to acquire extremely rapid simultaneous multi-color imaging of living cells expressing fluorescent proteins. The speed and resolution of this system are unsurpassed in any other instrument. This instrumentation will allow our users to approach a wide array of questions spanning three important biomedical areas (microbial biology, chromatin biology, and mitosis) that are limited by existing microscopy methods. A major obstacle in microbial cell biology is that medically important microbes, such as Streptococcus pneumoniae are only ~0.5 5m, which is only slightly larger than the resolution of the light microscope, making imaging of the subcellular distribution of proteins virtually impossible. Asymmetry is very important in bacterial differentiation and communication in biofilm formation, highlighting the importance of being able to dynamically image the distribution of components in these organisms at high resolution. Likewise the epigenetic modifications of chromatin are critical to gene expression, and increasing evidence shows that specific DNA sites are spatially defined in chromatin structure. Identifying when and how chromatin marks are distributed provide additional examples of how super resolution imaging will make an impact on an important area of research. Finally, the dynamic organization of the cytoskeleton is critical for proper cell morphology and for mitotic progression. SuperResolution imaging has the capacity to identify when and where important dynamics regulatory proteins act, and the super speed imaging will allow us to gain novel insights into the dynamic regulation of the microtubule cytoskeleton. Overall the proposed instrumentation would have a significant impact on the research approaches and progress made by life sciences researchers at our university.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Biomedical Research Support Shared Instrumentation Grants (S10)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-CB-Q (30))
Program Officer
Birken, Steven
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Indiana University-Purdue University at Indianapolis
Other Basic Sciences
Schools of Medicine
United States
Zip Code
Hernando-Pérez, Mercedes; Setayeshgar, Sima; Hou, Yifeng et al. (2018) Layered Structure and Complex Mechanochemistry Underlie Strength and Versatility in a Bacterial Adhesive. MBio 9:
Bisson-Filho, Alexandre W; Hsu, Yen-Pang; Squyres, Georgia R et al. (2017) Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 355:739-743
Phillips, Andrew M; Calvo, Rebecca A; Kearns, Daniel B (2015) Functional Activation of the Flagellar Type III Secretion Export Apparatus. PLoS Genet 11:e1005443
Mukherjee, Sampriti; Bree, Anna C; Liu, Jing et al. (2015) Adaptor-mediated Lon proteolysis restricts Bacillus subtilis hyperflagellation. Proc Natl Acad Sci U S A 112:250-5
van Teeseling, Muriel C F; Mesman, Rob J; Kuru, Erkin et al. (2015) Anammox Planctomycetes have a peptidoglycan cell wall. Nat Commun 6:6878
Jiang, Chao; Brown, Pamela J B; Ducret, Adrien et al. (2014) Sequential evolution of bacterial morphology by co-option of a developmental regulator. Nature 506:489-93
Tsui, Ho-Ching T; Boersma, Michael J; Vella, Stephen A et al. (2014) Pbp2x localizes separately from Pbp2b and other peptidoglycan synthesis proteins during later stages of cell division of Streptococcus pneumoniae?D39. Mol Microbiol 94:21-40
Guttenplan, Sarah B; Shaw, Sidney; Kearns, Daniel B (2013) The cell biology of peritrichous flagella in Bacillus subtilis. Mol Microbiol 87:211-29
Land, Adrian D; Tsui, Ho-Ching T; Kocaoglu, Ozden et al. (2013) Requirement of essential Pbp2x and GpsB for septal ring closure in Streptococcus pneumoniae D39. Mol Microbiol 90:939-55
Wan, Zhe; Brown, Pamela J B; Elliott, Ellen N et al. (2013) The adhesive and cohesive properties of a bacterial polysaccharide adhesin are modulated by a deacetylase. Mol Microbiol 88:486-500

Showing the most recent 10 out of 13 publications