The investigators are applying for support for years 31 to 35 for the Environmental Pathology/ Toxicology (EP/T) Program at the University of Washington (UW), a Training Program that has been continuously been funded by the NIEHS since 1978. The long-term goal of the investigators'program remains mentoring pre- and postdoctoral trainees to become successful independent scientists who are well equipped to respond to the environmental health research needs of the US in the coming generations. The long-established program has been highly successful in this endeavor, and proposed changes ensure that it conforms closely to the NIEHS Strategic Plan 2006. The investigators also are highly responsive to the recent restructuring of T32 applications announced by the NIEHS (NOTES-06-007). The Program is a 30-year-long collaboration between the Department of Pathology (School of Medicine) and the Department of Environmental and Occupational Health Sciences (DEOHS;School of Public Health and Community Medicine). The EP/T Program is divided into four research core areas (leaders): Gastrointestinal, Liver, and Kidney (Dr. Eaton);Neurotoxicology and Reproductive Biology/Development (Dr. Costa);Cardiorespiratory (Dr. Kavanagh);and Molecular Mutagenesis and Carcinogenesis (Dr. Monnat) with 27 training faculty, an increase of 5 from the previous cycle, who are mostly from the DEOHS (11) or the Department of Pathology (10). New to this competitive renewal is the addition of pre- and post-graduate training as well as three faculty in Genome Sciences, and new opportunities for trainees to participate in translational and clinical research programs. The EP/T Program is directed by Dr. Thomas Montine (Program Director), Dr. Elaine Faustman (Deputy Director), and a Steering Committee constituted by the research core leaders. The Program includes virtually all NIEHS-supported investigators at UW, is closely linked with NIEHS-supported centers at UW focused on ecogenetics, toxicogenomics, and risk assessment, among others, and is highly integrated with a wide array of well-funded, complementary research centers and projects. Given the investigators'excellent track record of training as well as the outstanding and growing opportunities at UW, they propose to increase their Program with two additional postdoctoral training positions for a total of 8 pre-doctoral and 5 postdoctoral trainees, and thereby continue to train future leaders in environmental heath science. BACKGROUND The current application proposes an increase of 2 postdoctoral positions for a total of 8 pre-doctoral and 5 postdoctoral positions. The faculty will be increased to 27, an increase of 5 mentors since the previous grant application. Basic research on disease mechanisms related to environmental health was the initial scope of the program when initiated in 1978 and was expanded to include research Clusters (cores) in 1998 (Cluster 1: Gastrointestinal, Liver and Kidney;Cluster II: Neurologic, Reproductive, and Developmental;Cluster III: Cardiorespiratory Diseases;and Cluster IV: Molecular Mutagenesis &Carcinogenesis. In the upcoming application period these aspects will be maintained and added emphasis will be placed on genome sciences and new opportunities for training and participation in translational and clinical research. The added emphasis on genome sciences for pre-doctoral and postdoctoral students is also reflective of the integration of the University of Washington's Genome Sciences Graduate Program into the proposed Training Program.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Institutional National Research Service Award (T32)
Project #
5T32ES007032-33
Application #
7884490
Study Section
Environmental Health Sciences Review Committee (EHS)
Program Officer
Shreffler, Carol K
Project Start
1978-07-01
Project End
2013-06-30
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
33
Fiscal Year
2010
Total Cost
$449,368
Indirect Cost
Name
University of Washington
Department
Pathology
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Li, Cindy Yanfei; Dempsey, Joseph L; Wang, Dongfang et al. (2018) PBDEs Altered Gut Microbiome and Bile Acid Homeostasis in Male C57BL/6 Mice. Drug Metab Dispos 46:1226-1240
Meador, James P; Yeh, Andrew; Gallagher, Evan P (2018) Adverse metabolic effects in fish exposed to contaminants of emerging concern in the field and laboratory. Environ Pollut 236:850-861
Herron, Josi; Hines, Kelly M; Xu, Libin (2018) Assessment of Altered Cholesterol Homeostasis by Xenobiotics Using Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. Curr Protoc Toxicol 78:e65
Weldon, Brittany A; Griffith, William C; Workman, Tomomi et al. (2018) In vitro to in vivo benchmark dose comparisons to inform risk assessment of quantum dot nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 10:e1507
Dempsey, Joseph; Zhang, Angela; Cui, Julia Yue (2018) Coordinate regulation of long non-coding RNAs and protein-coding genes in germ-free mice. BMC Genomics 19:834
Costa, Lucio G; Chang, Yu-Chi; Cole, Toby B (2017) Developmental Neurotoxicity of Traffic-Related Air Pollution: Focus on Autism. Curr Environ Health Rep 4:156-165
Costa, Lucio G; Cole, Toby B; Coburn, Jacki et al. (2017) Neurotoxicity of traffic-related air pollution. Neurotoxicology 59:133-139
Meador, James P; Yeh, Andrew; Gallagher, Evan P (2017) Determining potential adverse effects in marine fish exposed to pharmaceuticals and personal care products with the fish plasma model and whole-body tissue concentrations. Environ Pollut 230:1018-1029
Chang, Yu-Chi; Cole, Toby B; Costa, Lucio G (2017) Behavioral Phenotyping for Autism Spectrum Disorders in Mice. Curr Protoc Toxicol 72:11.22.1-11.22.21
Bennett, Christopher F; Kwon, Jane J; Chen, Christine et al. (2017) Transaldolase inhibition impairs mitochondrial respiration and induces a starvation-like longevity response in Caenorhabditis elegans. PLoS Genet 13:e1006695

Showing the most recent 10 out of 186 publications