The Johns Hopkins Predoctoral Training Program in Human Genetics (JHHG) has grown steadily since its inception in 1980 in parallel to the spectacular growth of genetics and genomics and their application to medicine over the last three decades. Similarly, the Johns Hopkins School of Medicine continues to make commitments to human genetics as evidenced by the establishment of the McKusick-Nathans Institute of Genetic Medicine in 1999, provision of state of the art research space in 2004 and the introduction in 2009 of a new medical school curriculum, The Genes to Society curriculum, that has genetics and genetic-thinking as an organizing principle. The overall objective of the JHHG is to provide our students with a strong foundation in basic science by exposure to a rigorous graduate education in genetics, genomics, molecular biology, cell biology and biochemistry plus a core of medically-related courses selected to provide knowledge of human biology in health and disease. Through seminars, laboratory rotations and thesis work, our students are also exposed to a wide variety of modern research technologies relevant to human genetics and learn the basic skills necessary to become an independent investigator. The research activities of the 63 JHHG preceptors are diverse and include human and model organism genetics and genomics, developmental genetics, identification and analysis of genes and genetic variants responsible for human monogenic disorders and complex traits, molecular cytogenetic, quantitative genetics, gene therapy, oncogenetics, stem cell genetics and studies of the ethical and societal consequences of the genetic revolution. This broad spectrum of research activities in human genetics provides virtually unlimited opportunities for our students to work on projects appealing to their individual interests. The ultimate goal of our program is to produce independent investigators who are well- versed in human biology in health and disease and in all aspects of human genetics and genomics. Equipped wit this education, our students are well prepared to answer important basic science questions and to translate this information into medical advances. The success of our graduates, who obtain postdoctoral positions in top laboratories and go on to productive academic careers in top universities, strongly supports this conclusion.

Public Health Relevance

Advances in human genetics and genomics are being made at an astounding rate while their application to medicine is proceeding at a much slower pace. The Johns Hopkins Predoctoral Training Program in Human Genetics aims to provide highly motivated and capable students with knowledge and experimental tools that will enable them to answer important questions at the interface between genetics and medicine. Ultimately, our trainees will play an important role in delivering the promise of genetics to human health.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
2T32GM007814-31
Application #
8214358
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Haynes, Susan R
Project Start
1980-07-01
Project End
2017-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
31
Fiscal Year
2012
Total Cost
$625,164
Indirect Cost
$29,716
Name
Johns Hopkins University
Department
Genetics
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Britson, Kyla A; Yang, Stephanie Y; Lloyd, Thomas E (2018) New Developments in the Genetics of Inclusion Body Myositis. Curr Rheumatol Rep 20:26
Han, Sangwoo T; Rab, Andras; Pellicore, Matthew J et al. (2018) Residual function of cystic fibrosis mutants predicts response to small molecule CFTR modulators. JCI Insight 3:
Sharma, Neeraj; Evans, Taylor A; Pellicore, Matthew J et al. (2018) Capitalizing on the heterogeneous effects of CFTR nonsense and frameshift variants to inform therapeutic strategy for cystic fibrosis. PLoS Genet 14:e1007723
Stuttgen, K M; Bollinger, J M; Dvoskin, R L et al. (2018) Perspectives on Genetic Testing and Return of Results from the First Cohort of Presymptomatically Tested Individuals At Risk of Huntington Disease. J Genet Couns 27:1428-1437
Bihlmeyer, Nathan A; Brody, Jennifer A; Smith, Albert Vernon et al. (2018) ExomeChip-Wide Analysis of 95 626 Individuals Identifies 10 Novel Loci Associated With QT and JT Intervals. Circ Genom Precis Med 11:e001758
Tabuchi, Masashi; Monaco, Joseph D; Duan, Grace et al. (2018) Clock-Generated Temporal Codes Determine Synaptic Plasticity to Control Sleep. Cell 175:1213-1227.e18
Ashar, Foram N; Mitchell, Rebecca N; Albert, Christine M et al. (2018) A comprehensive evaluation of the genetic architecture of sudden cardiac arrest. Eur Heart J 39:3961-3969
Raraigh, Karen S; Han, Sangwoo T; Davis, Emily et al. (2018) Functional Assays Are Essential for Interpretation of Missense Variants Associated with Variable Expressivity. Am J Hum Genet 102:1062-1077
Teerapuncharoen, Krittika; Wells, J Michael; Raju, S Vamsee et al. (2018) Acquired CFTR Dysfunction and Radiographic Bronchiectasis in Current and Former Smokers: A Cross-Sectional Study. Ann Am Thorac Soc :
Hook, Paul W; McClymont, Sarah A; Cannon, Gabrielle H et al. (2018) Single-Cell RNA-Seq of Mouse Dopaminergic Neurons Informs Candidate Gene Selection for Sporadic Parkinson Disease. Am J Hum Genet 102:427-446

Showing the most recent 10 out of 220 publications